NASA CR-(120994)

development of low-cost welding procedures FOR THICK SECTIONS OF HY-150 STEEL

This report was prepared as an account of Government sponsored work. Neither the United States, nor the National Aeronautics and Space Administration (NASA), nor any person acting on behalf of NASA:
(A) Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
(B) Assumes any liabilities with respect to the use of or for damages resulting from the use of any information, apparatus, method of process disclosed in this report.

As used above, "person acting on behalf of NASA" includes any employee or contractor of NASA, or employee of such contractor, to the extent that such employee or contractor of NASA, or employee of such contractor prepares, diseminated, or provides access to, any information pursuant to his employment or contract with NASA, or his employment with such contractor.

Requests for copies of this report should be referred to:
National Aeronautics and Space Administration Office of Scientific and Technical Information

Attention: AFSS-A
Washington, D. C. 20546

Final Report

DEVELOPMENT OF LOW-COST WELDING PROCEDURES FOR THICK SECTION HY-150 STEEL
by
P. M. Schmidt and R. S. Snow

Prepared for
 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

December, 1972
Contract NAS 3-12056

Technical Management
NASA Lewis Research Center
Cleveland, Ohio
John A. Misencik

GENERAL DYNAMICS
Electric Boat Division
Groton, Connecticut

This report summarizes work performed by the Electric Boat Division of General Dynamics Corporation from June 1969, to July 1971, under Contract NAS 3-12056. The work was administered under the direction of Mr. John A. Misencik of the NASA Lewis Research Center. Overall responsibility for the contractual performance of General Dynamics was vested in Mr. J. M. Cameron, Manager of Welding and Materials Engineering. Technical responsibility was vested in Mr. J. Lanzafame, Chief of Process Development Engineering through D. R. Smith, Supervisor of Structural Welding Development.

General Dynamics personnel who participated in the work described herein include: P. M. Schmidt, project engineer and principal investigator; C. R. Weaver, welding engineer; and R. S. Snow, materials engineer.

All fracture toughness specimen precracking and testing for this contract was performed by Lehigh University Fritz Laboratory, under the direction of Dr. R. G. Slutter; Drs. P. C. Paris, R. P. Wei, and G. C. Sih, all of Del Research Corporation, Hellerstown, Pennsylvania, were retained as consultants in fracture mechanics. The information contained in this document is also released as General Dynamics/Electric Boat Division Report PDE-170.

ABSTRACT

Low cost welding procedures were developed for welding 6-inch (15.24 cm) thick HY-150 steel to be used in the manufacture of large diameter motor case 'Y' rings and nozzle attachment flanges. An extensive investigation was made of the mechanical and metallurgical properties and fracture toughness of HY-150 base plate and welds made with the manual shielded metal arc process and semi-automatic gas metal arc process in the flat position. Transverse tensiles, all-weld metal tensiles, Charpy $V-n o t c h$ specimens and edge notched bend specimens were tested in the course of the program. In addition metallographic studies and hardness tests were performed on the weld, weld HAZ and base metal. The results of the work performed indicate that both the shielded metal arc and gas metal arc processes are capable of producing consistently sound welds as determined by radiographic and ultrasonic inspection. In addition, the weld metal. deposited by each process was found to exhibit a good combination of strength and toughness such that the selection of a rolled and welded. procedure for fabricating rocket motor case components would appear to be technically feasible.

TABLE OF CONTENTS

Page Number
NOTICE 1
TITLE PAGE 11
FOREWARD iii
ABSTRACT iv
TABLE OF CONTENTS v
LIST OF TABLES vii
LIST OF FIGURES ix
SUMMARY. xii
1.0 INTRODUCTION. 1
2.0 MATERIALS, EQUIPMENT AND TESTING PROCEDURES 2
2.1 Materials. 2
2.1.1 Base Material 2
4
2.1.2 Weld Filler Wires 4
2.2 Equipment 4
2.2.1 Welding Equipment 4
2.2.2 Instrumentation 5
2.3 Testing and Inspection Procedures 5
2.3.1 Mechanical Property Tests 5
2.3.2 Fracture Toughness Testing. 2 Nondestructive Testing and Inspection 6
3.0 TASKS PERFORMED AND PROCEDURES 8
3.1 Task I - Review of Existing Data 8
3.2 Task II - Material Characterization Studies. 8
3.3 Task III - Preliminary Evaluation of Weldments 10
3.4 Task IV - Optimization of Welding Methods. 21

TABLE OF CONTENTS (Continued)
Page Number
4.0 RESULTS AND DISCUSSION. 22
4.1 Task I 224.2 Task II24
4.3 Task III 34
5.0 CONCLUSIONS 62
6.0 RECOMMENDATIONS 63
REFERENCES 64

Figure Number	Title	Page Number
I	Chemical Composition of $6^{\prime \prime}(15.24 \mathrm{~cm})$ Thick HY-150 Plate, U.S. Steel Heat \#5P3947. . . .	66
II	Mill Heat Treating Data, Plates F-4602 and F-4603	67
III	Chemical Composition of HY-150 Weld Wire and As-Deposited Weld Metal.	68
IV	Welding Procedure Record Sheet for Test Plate No. PD-4836 (SMA).	69
V	Welding Procedure Record Sheet for Test Plate No. PD-4837 (GMA).	71
VI	Welding parameters for Weldments PD-4825, PD-4826 and PD-4827.	73
VII	Welding Parameters for Weldments PD-4830, PD-4831 and PD-4931.	75
VIII	Welding Parameters for Weldments PD-4824, PD-4828 and PD-4829 (Set GMA-2).	77
IX	Welding Parameters for Weldments PD-4833, PD-4834 and PD-4835.	79
X	Summary of HY-150 Base Metal Tensile Properties - U.S.S. Heat \#5P3947	81
XI	Charpy V-Notch Impact Data as Reported by U.S. Steel for Master Plates $\mathrm{F}-4602$ and F-4603	82
XII	CVN Impact Energy Vs. Temperature Data for Master Plates F-4602 and F-4603 - E.B. Div. Test Results	83
XIII	HY-150 Base Metal Fracture Toughness Test Data	84
XIV	All-Weld-Metal Tensile and Charpy Impact Test Data - SMA Welds in Restrained 2-Inch (5.1 cm) HY-80 Base Plate	86
XV	All-Weld-Metal Tensile Data - GMA Welds on Restrained 4 -Inch (10.2 cm) HY-80 Base Plate	87

Figure Number	Title	$\begin{gathered} \text { Page } \\ \text { Number } \end{gathered}$
XVI	Charpy V-Notch Impact Data - GMA Welds Restrained 4" (10.2 cm) HY-80 Base Plate	88
XVII	SMA Weldment Tensile Properties (Set SMA-1)	89
XVIII	$6^{\prime \prime}(15.24 \mathrm{~cm})$ HY-150 SMA Weldment Charpy Impact Properties.	90
XIX	GMA Weldment PD-4825, Heat Input Data for AllWeld Tensile Specimens.	91
XX	Results of R_{C} Hardness Traverse, Weldment PD4827 (See Figure 30).	92
XXI	GMA Weldment Tensile Properties (Set GMA-1)	97
XXII	GMA Weldment Charpy Impact Properties (Set GMA-2).	98
XXIII	GMA Weldment PD-4830, Heat Input Data for All-Weld Tensile Specimens.	99
XXIV	Results of R_{C} Hardness Traverse, Weldment PD-4831 (See Figure 34)	100
XXV	GMA Weldment Tensile Properties (Set GMA-2)	105
XXVI	GMA Weldment Charpy Impact Properties (Set GMA-2).	107
XXVII	GMA Weldment PD-4828, Heat Input Data for All-Weld Tensile Specimens.	108
XXVIII	Results of R_{c} Hardness Traverse, Weldment PD-4824 (See Figure 38)	109
XXIX	GMA Weldment Tensile Properties (Set GMA-3)	113
XxX	GMA Weldment Charpy Impact Properties (Set GMA-3).	114
XXXI	GMA Weldment PD-4833, Heat Input Data for All-Weld Tensile Specimens.	115
XXXII	Results of R_{c} Hardness Traverse, Weldment PD-4834 (See Figure 42)	116
XXXIII	Optimum Welding Procedure for Spray Arc GMA Welding $6^{\prime \prime}$ (15.24 cm) HY-150 Steel in Flat Position	118

LIST OF FIGURES

Figure Number	Title	Page Number
1	Defect Patterns in Base Plates	120
2	Material Layout of Master Plate F-4602	121
3	Material Layout of Master Plate F-4603	122
4	Locations of Hardness Test Blocks, Plate F-4602	123
5	Tensile Specimen Dimensions and Details.	124
6	Charpy V-Notch Impact Specimen	125
7	Base Metal Edge-Notched Fracture Toughness Bend Specimen Dimensions and Details	126
8	Methods of Loading Used in Pre-Cracking and Testing All KIC Specimens of This Program.	127
9	Location and Orientation of Tensile and Charpy Specimens Within Specimen Blocks Taken from Master Plates F-4602 and F-4603.	128
10	Weld Joint Design and Specimen Locations, Test Plate PD-4836 (SMA).	129
11	Weld Joint Design and Specimen Locations, Test Piate PD-4837 (GMA).	130
12	Test Specimen Layout for Task III Weldments PD-4825, PD-4830, PD-4828 and PD-4833.	131
13	Test Specimen Layout for Task III Weldments PD-4827, PD-4831, PD-4824 and PD-4834.	132
14	Weld Location and Rolling Direction Details for Task III and IV KIC Specimens, Including PD-4826 PD-4931, PD-4829 and PD-4835.	133
15	Transverse CVN Impact Temperature Transition Curve - Plates $\mathrm{F}-4602$ and $\mathrm{F}-4603$.	134
16	Longitudinal CVN Impact Temperature Transition Curve - Plate F-4602	135
17	Photo Micrographs of Near-Surface and MidThickness Areas of Plate F-4602.	136

LIST OF FIGURES (Continued)

Figure Number	Title	Page Number
18	Base Metal KIC Specimen Mounted in Test Frame for Precracking.	137
19	Precrack Dimensions and Details, Base Metal Fracture Toughness Test Specimen PD-2BNK . .	138
20	Precrack Dimensions and Details, Base Metal Fracture Toughness Test Specimen PD-3BMK . .	139
21	Fracture Surfaces, Base Metal Fracture Toughness Test Specimens After Testing.	140
22	Load-Displacement Curve for Fracture Toughness Test of Specimen PD-2BMK	141
23	Load-Displacement Curve for Fracture Toughness Test of Specimen PD-3BMK	142
24	Material Response Curves Base Metal \& Weldments	143
25	Preliminary Weld Wire Evaluation Weldment PD4837 Partially Completed and Edge Fillet Welded for High Restraint	144
26	Photo-Macrographs of Preliminary Weld Wire Evaluation Test Weldments PD-4836 and PD-4837.	145
27	Comparison of Proposed and Selected Task III and IV Weld Joint Designs.	146
28	Weld Mismatch Details, Weldment PD-4826.	147
29	Macrosection Through Weldment PD-4827.	148
30	R_{c} Hardness Traverse Pattern, Weldment PD-4827	149
31	Specimen PD-4826 Fracture Surface and Precrack Area Details	150
32	Load Vs. Displacement Record, Fracture Toughness Bend Specimen PD-4826	151
33	Macrosection Through Weldment PD-4831.	152
34	R_{c} Hardness Traverse Pattern, Weldment PD-4831	153
35	Specimen PD-4931 Fracture Surface and Precrack Area Details	154

LIST OF FIGURES (Continued)

Figure Number	Title	Page Number
36	Load Vs. Displacement Record, Fracture Toughness Bend Specimen PD-4931.	155
37	Macrosection Through Weldment PD-4824.	156
38	R_{c} Hardness Traverse Pattern Weldment PD-4824.	157
39	Specimen PD-4829 Fracture Surface and Precrack Area Details	158
40	Load Vs. Displacement Record, Fracture Toughness Bend Specimen PD-4829.	159
41	Macrosection Through Weldment PD-4834. .	160
42	R_{C} Hardness Traverse Pattern, Weldment PD-4834	161
43	Specimen PD-4835 Fracture Surface and Precrack Area Details	162
44	Load Vs. Displacement Record, Fracture Toughness Bend Specimen PD-4835.	163

SUMMARY

This program was conducted to develop low-cost welding procedures for welding thick sections of HY-150 steel and to use these procedures to fabricate test weldments in 6 -inch (15.24 cm) thick base material. Extensive tests were conducted to establish the mechanical, metallurgical and fracture toughness properties of these thick sections. The data from this program will help to establish the suitability of using 6-inch (15.24 cm) thick HY-150 steel and a rolled and welded fabrication procedure to produce lower cost large-diameter 'Y' rings and nozzle attachment flanges. The work performed included four tasks, three of which were completed. A base plate material characterization study was conducted to determine the mechanical and metallurgical properties of the base plate material. Welds were made in 6 -inch (15.24 cm) thick HY-150 using the manual shielded metal arc process and the semi-automatic gas metal arc process. The effect of preheat temperature and interpass temperature on the strength and toughness of welds was determined. In addition the use of high wire feed speeds and welding currents were evaluated for welding with the gas metal arc process to determine their effect on weld quality and to maximize the deposition rate for this process. Edge-notched fracture toughness bend tests were performed on welded specimens made with both welding processes and on un-welded plate material. The results of this program established the suitability of both welding processes for producing 'Y' rings and nozzle attachment flanges in a 6 -inch $(15.24 \mathrm{~cm}$) thick HY-150 material. The semi-automatic gas metal arc procedure

SUMMARY (Continued)
was recommended as optimum for the intended application due to the inherently higher deposition rate afforded by this process and the need for more stringent controls required in handling the 14018 manual shielded metal arc electrode in a production environment.

1.0 INTRODUCTION

The use of machined forgings for large diameter Y-rings and nozzle attachment flanges adds considerably to the cost of solid fuel rocket motor cases. Therefore, a program was undertaken to develop welding techniques for welding 6 -inch (15.24 cm) thick HY-150 steel in an effort to provide low cost weldments which could be used in place of the more expensive forgings.

One of the primary requirements of the optimum welding procedure developed is that the weldments produced exhibit a minimum yield strength of $140,000 \mathrm{psi}(966 \mathrm{MPa}$) in $6-1 \mathrm{nch}(15.24 \mathrm{~cm})$ thick plate with sufficient toughness such that unstable crack propagation at stress levels below yield will not occur in structures fabricated of this material. A manual shielded metal arc (SMA*) electrode, Type 14018 AW coated electrode and a gas metal arc (GMA*) bare wire electrode, Type 140-S, both developed under a Navy sponsored contract for welding $5 \mathrm{Ni}-\mathrm{Cr}-\mathrm{Mo}-\mathrm{V}$ steel were used for making the 6 -inch (15.24 cm) weldments in this program. Work centered primarily on determining which welding process could provide the required welding characteristics, weld metal soundness and the best combination of strength and toughness at lowest cost.

The work of this contract was divided into four major tasks:
Task I - Review of Existing Data
Task II - Material Characterization Study
Task III - Preliminary Evaluation of Weldments Task IV - Optimization of Welding Methods

Work on this program was terminated after completion of Task III efforts.
*As defined by the American Welding Society

2.0 MATERIALS, EQUIPMENT AND TESTING PROCEDURES

2.1 MATERIALS

2.1.1 BASE MATERIAL -- All base material used in this program was basic electric furnace air-melted and vacuum-degassed 5\% Ni-Cr-Mo-V (HY-150) steel, produced in general accordance with the requirements of MIL-S-24371. It was melted and converted into 6-inch (15.24 cm) thick quenched and tempered base plate by United States Steel Corporation, Homestead Works. The heat number was 5P3947. Since no production heat of HY-150 steel had been rolled into 6 -inch (15.24 cm) thick base plate prior to the production of the plate material used in this program the attainment of a $140,000 \mathrm{psi}(966 \mathrm{MPa})$ minimum yield strength was not guaranteed.

This material was supplied to the Electric Boat Division as two master plates, each $108^{\prime \prime} \times 102^{\prime \prime} \times 6^{\prime \prime}$ ($274.3 \mathrm{~cm} \times 259.1 \mathrm{~cm} \times 15.24 \mathrm{~cm}$). The plate numbers were F 4602 and F 4603.

In order to improve base plate hardenability several modifications were made to the chemical composition specified in MIL-S24371. The carbon content was increased from 0.12% maximum to a range of 0.09 to 0.13%, and other alloying elements tending to increase hardenability or toughness were required to be within the range specified by MIL-S-24371, but at mid-range levels or higher. The maximum percentage of sulfur was reduced from 0.015%, per MIL-S-24371, to 0.010%. Complete base plate chemical analysis data are presented in Table I.

2.02 .12 .1 .1 (Continued)

Conversion of ingot into plate material was accomplished by first hot forging the ingot to a $20-1$ nch ($50.8-\mathrm{cm}$) - thick slab. This slab was then cut in half and hot-rolled to a 6-inch (15.24-cm) thickness with approximately a $1: 1$ cross-rolilng-ratio.

The plates were ultrasonically inspected for soundness after rolling and each was found to contain a band of numerous small defects. These bands were each approximately $16-1$ nches ($40.6-\mathrm{cm}$) wide, running down the center of each plate parallel to the long dimension. The shapes and locations of these defect areas are illustrated in Figure 1. The defects contained in these areas are attributed to gas and possibly shrinkage porosity at the center of the ingot. The presence of these defects did not significantly affect the results of this program, however, since test pieces were laid-out and removed from each master plate in such a manner that, with one exception, no defects were located in critical areas. The one exception was a lamination that affected the propagation of the fatigue precrack in fracture toughness specimen PD-2BMK, from plate F 4602 . Figures 2 and 3 1llustrate the lay-out of test pieces within each master plate.

Following uitrasonic inspection each master plate was heat-treated as described in Table II. Plate F 4603 had to be reheat-treated several times before acceptable mechanical property test results were obtained.
2.02 .1 (Continued)
2.1.2 WELDING ELECTRODES -- Two types of welding electrodes were used in this program. McKay Company Type E-14018AW coated electrodes were used for shielded metal arc (SMA) welding while Airco Type 140 S bare electrode was used for GMA spray-arc welding.

All coated electrode was produced from McKay Heat \#422W2201, with all $1 / 8$-inch (0.31 cm) electrodes being from Lot \#281995, Batch \#1672 and all 3/16-inch (0.47 cm) electrodes from Lot \#291795, Batch \#2409. The bare electrode was $0.062-i n c h(0.15 \mathrm{~cm})$ diameter, Airco Heat \#lP1338. Chemical analysis data for each type electrode and as-deposited weld metal are shown in Table III.
2.2 EQUIPMENT
2.2.1 WELDING EQUIPMENT -- All welding performed in this program was accomplished using D.C. reverse polarity current, supplied by conventional transformer/rectifier power supplies. A 300ampere drooping-characteristic power supply was used with the SMA process. For GMA spray-arc welding, a 400-ampere constant-potential power supply was used. All preheating was accomplished by use of electric strip heaters. These strip heaters were automatically turned on and off to maintain proper weldment preheat and interpass temperatures for the 2 nd and 3 rd sets of GMA sprayarc weldments. When the lst set of GMA and SMA weldments were produced, weldment temperature was measured throughout welding and the heaters removed from the weldment when it became too warm.
2.02 .2 (Continued)
2.2.2 INSTRUMENTATION -- Welding currents and arc voltages were measured with calibrated tong meters, ammeter and voltmeter recorders. SMA arc voltages were measured between the jaws of the electrode holder and the work piece. Arc times were measured to the nearest second by an electric clock, which automatically turned on and off with the flow and stoppage of welding current.

2.3 TESTING AND INSPECTION PROCEDURES

2.3.1 MECHANICAL PROPERTY TESTS -- All mechanical property tests conducted in this program were performed in accordance with Federal or ASTM Specifications as follows:
a. Tensile Tests: Tensile tests were in accordance with Federal Test Standard 151, Method 211.1. Specimens tested were either Type R1 or R3 round, reduced section specimens with 0.505 -inch (1.28 cm) or 0.252 -inch (0.64 cm) diameters, respectively. Gage lengths were 2 -inch ($5.08-\mathrm{cm}$) and l-inch ($2.54-\mathrm{cm}$), respectively.
b. Charpy V-Notch Impact Tests: Impact specimens were all tested on a calibrated Riehle impact machine in accordance with Federal Test Standard 151, Method 221.1.
c. Hardness Tests: All hardness tests performed were in accordance with Federal Test Standard 151, Method 243.1, Rockwell Hardness Test.
2.02 .3 (Continued)
2.3.2 FRACTURE TOUGHNESS TESTING -- All fracture toughness tests performed were essentially consistent with the methods described in ASTM Test Method E-399-70T. Tests were conducted on fullthickness single-edge-notched bend specimens subjected to fourpoint loading. In accordance with the contract requirements for this program, base-plate and Task IV weldment specimen length and width dimensions were twice the dimensions required by ASTM Method E-399-70T in proportion to specimen thickness. Task III weldment specimen length was similarly doubled but the width was reduced to only half the width required by Method E-399-70T. The effect, if any, of increases in specimen length and width would be to enhance test quality; decreasing the width of the Task III weldment specimens, however, would tend to degrade rather than improve test quality.
2.3.3 NONDESTRUCTIVE TESTING AND INSPECTION -- All nondestructive testing and inspection of weldments and base plate were performed as follows:
a. Liquid Penetrant, Magnetic Particle and Radiographic Tests: The inspection techniques and standards of acceptance for these tests were in accordance with Sections 6 and 7 of NAVSHIPS 0900-006-9010, Fabrication, Welding and Inspection of HY-80 Submarine Hulls.
2.02 .3 2.3.3 (Continued)
b. Ultrasonic Tests: Inspection techniques and standards of acceptance for base plate material soundness were in accordance with MIL-S-24371, with weldments being inspected in accordance with NAVSHIPS 0900-006-3010, Ultrasonic Inspection Procedure and Acceptance Standards for Production and Repair Welds.

3.0 TASKS PERFORMED AND PROCEDURES

3.1 TASK I - REVIEW OF EXISTING DATA

Existing data and information relating to the state-of-the-art of HY-150 weldments were thoroughly reviewed prior to the initiation of work in Tasks II, III or IV of this program. This review included personal contact and discussions with research and development personnel from U. S. Steel Corporation, McKay Company, Air Reduction Company and U. S. Naval Research and Development Centers. The results obtained by the Electric Boat Division from several in-depth investigations of HY-130/150 weldments ($1,2,3$) were also reviewed.

The information thus obtained was then analyzed and utilized in the selection and specification of chemical compositions for both the base plate material and in the selection of weld filler wires used in this program.

The review of existing data and information was continued on a current-awareness basis for the duration of this program.

3.2 TASK II - MATERIAL CHARACTERIZATION STUDY

A base plate material characterization study was conducted to determine the mechanical and metallurgical properties of each of the master plates produced for use in this study.

Sample pieces, designated PD-12BM and PD-13BM located as shown in Figures 2 and 3, were taken from each of the two master plates. These samples were then each tested as follows:

One. - Standard 0.505 -inch (1.28 cm) transverse tensile test at plate mid-thickness (to determine T.S., 0.2% Y.S., \% elongation and \% R.A.)

One - Standard 0.505 -inch (1.28 cm) longitudinal tensile test at plate mid-thickness (to determine T.S., 0.2% Y.S., \% elongation and \% R.A.)

One - Special short-transverse 0.252 -inch (0.64 cm) (through the thickness) tensile test (to determine T.S., 0.2% Y.S., \% elongation and \% R.A.)

One - Transverse Charpy V-Notch impact energy vs. temperature curve at plate mid-thickness, $-300^{\circ} \mathrm{F}$ to $+212^{\circ} \mathrm{F}$ $\left(-148^{\circ} \mathrm{C}\right.$ to $\left.+100^{\circ} \mathrm{C}\right)$

One - Longitudinal Charpy V-notch impact energy vs. temperature curve, mid-thickness, plate F 4602 , only, $-300^{\circ} \mathrm{F}$ to $+212^{\circ} \mathrm{F}\left(-148^{\circ} \mathrm{C}\right.$ to $\left.+100^{\circ} \mathrm{C}\right)$

One - Micro and macro examination of plate near-surface and mid-surface areas to determine soundness, cleanliness and austenitic grain size.

A complete chemical analysis was performed and numerous Rockwell "C" surface-to-surface traverse hardness readings were taken. Figure 4 shows the location of four areas within Plate F4602 where hardness traverses were run.

3.03 .2 (Continued)

In addition, one edge-notched full-thickness fracture toughness bend test, longitudinal specimen designated PD-2BMK and PD-3BMK, was removed from each master plate as shown in Figures 2 and 3. Specimen dimensions and other details are shown in Figures 4 through 7. Figure 8 illustrates the manner in which all of the fracture toughness specimens tested in this program were loaded to accomplish precracking and testing. The locations and orientations of the tensile and Charpy specimens within pieces PD-12BM and $\mathrm{PD}-13 \mathrm{BM}$ are shown in Figure 9.

3.3 TASK III - PRELIMINARY EVALUATION OF WELDMENTS

The development of welding procedures for shielded-metal-arc (SMA) and spray-gas-metal-arc (GMA) welding HY-150 steel and the selection of an optimum process and procedure for use in Task IV were major objectives of this program. This was accomplished by the production and testing of four (4) sets of two (2) $6^{\prime \prime} \times 6^{\prime \prime} \times 24^{\prime \prime}(15.24 \mathrm{~cm} \times 15.24 \mathrm{~cm} \times 60.96 \mathrm{~cm})$ and one (1) $6^{\prime \prime} \times 6^{\prime \prime} \times 48^{\prime \prime}(15.24 \mathrm{~cm} \times 15.24 \mathrm{~cm} \times 122.2 \mathrm{~cm})$ test weldments, with each set being welded with a different welding process or different set of parameters from that used to produce any of the other welds. The selection of parameters to be used in producing these initial weldments was based on the results

3.03 .3 (Continued)

of the review of existing data (Task I), prior Electric Boat division experience in producing HY-150 weldments and the production and testing of two (2) preliminary weld wire evaluation test plates. The two test plates, weldments PD-4836 and PD4837, were produced to verify weld wire quality and establish basic strength levels for each wire when deposited under known conditions. These plates were also used as a means of verifying that the welding operators selected to weld subsequent Task III weldments were qualified to do so.

Production of Preliminary Evaluation Test Plates

Weldments PD-4836 and PD-4837 were produced using the parameters and welding conditions listed in Tables IV and V. PD-4836 was welded using the SMA welding process and PD-4837 was GMA sprayarc welded, following the deposition of two SMA root weld beads to close the weld root opening. HY-80 base plate was used for each of these weldments. Restraint was maximized by welding the outside edges of each test plate to a second, larger plate. Following completion of each weldment and after a seven-day waiting period, each weldment was magnetic particle, liquid penetrant, x-ray and ultrasonically inspected. They were then destructively tested as follows:

```
3.0 3.3 (Continued)
    PD-4836:
```

 Four - Standard 0.505-inch (1.28-cm) longitudinal
 all-weld-metal tensile specimens
 Twelve - Standard Charpy V-notch impact test specimens,
tested at $0^{\circ} \mathrm{F}, 32^{\circ} \mathrm{F}$ and $72^{\circ} \mathrm{F}\left(-17^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}\right.$, and
$22^{\circ} \mathrm{C}$)
One - Macro examination
PD-4837:
Eight - Standard 0.505-inch (1.28-cm) longitudinal
all-weld-metal tensile specimens
Twenty-four - Standard Charpy V-notch impact test specimens,
tested at $0^{\circ} \mathrm{F}, 32^{\circ} \mathrm{F}$ and $72^{\circ} \mathrm{F}\left(-17^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}\right.$ and
$22^{\circ} \mathrm{C}$)
One - Macro examination
Specimen locations for each of these weldments are shown in Fig-
ures 10 and 11.

Production of $6^{\prime \prime} \times 6^{\prime \prime}(15.24-\mathrm{cm} \times 15.24-\mathrm{cm})$ Weldments Following an analysis of the results from tests of weldments PD4836 and PD-4837, parameters were selected for use in producing the first two sets of 6 -inch ($15.24-\mathrm{cm}$) wide x 6 -inch ($15.24-\mathrm{cm}$) thick weldments. The first set was welded using the SMA process; GMA spray-arc welding was used for the second test. These sets consisted of the following weldments:

3.03 .3 (Continued)

1st Set (SMA-1)
Weldment PD-4825, $6^{\prime \prime} \times 6^{\prime \prime} \times 48^{\prime \prime} \underset{(15.24-\mathrm{cm} \times 15.24-\mathrm{cm} \times}{122.0-\mathrm{cm})} \begin{gathered}(120)\end{gathered}$
Weldment PD-4827, 6" $\times 6^{\prime \prime} \times 48 "$ (15.24-cm x $15.24-\mathrm{cm} \times$ $122.0-\mathrm{cm})$

Weldment PD-4826, 6" x 6" x 108" (15.24-cm x 15.24-cm x $274.3-\mathrm{cm})$

2nd Set (GMA-1)

Weldment PD-4831, $6^{\prime \prime} \times 6^{\prime \prime} \times 48^{\prime \prime} \begin{array}{r}(15.24-\mathrm{cm} \times 15.24-\mathrm{cm} \times \\ \\ 122.0-\mathrm{cm})\end{array}$
Weldment PD-4931, 6" x 6" x 108" (15.24-cm x 15.24-cm x $274.3-\mathrm{cm})$

The parameters and conditions under which these first two sets of $6^{\prime \prime} \times 6^{\prime \prime}(15.24-\mathrm{cm} \times 15.24-\mathrm{cm})$ weldments were produced are summarized in Tables VI and VII. 3-inch (7.62-cm) run-on/ run-off tabs were added to the end of each weld joint to minimize the influence of weld starts and stops on weld mechanical properties and quality.

Following the completion of welding and after a seven-day or longer waiting period had been observed, each weldment was magnetic particle, liquid penetrant, x-ray and ultrasonically inspected. The weldments were then destructively tested as follows:

```
3.0 3.3 (Continued)
1st Set (SMA-1)
    Weldment PD-4825:
    Five - Standard 0.505-inch (1.28-cm) longitudinal all-
        weld-metal tensile specimens
    Seven - Standard Charpy V-notch impact specimens, trans-
        verse to weld and notched in weld HAZ, tested
        at }\mp@subsup{0}{}{\circ}\textrm{F}\mathrm{ and }7\mp@subsup{2}{}{\circ}\textrm{F}(-1\mp@subsup{7}{}{\circ}\textrm{C}\mathrm{ and 22
    Weldment PD-4827:
    Six - Standard 0.505-inch (1.28-cm) tensile speci-
        mens, transverse to weld with weld HAZ contained
        in specimen reduced section area
    Seven - Standard Charpy V-notch longitudinal all-weld-
        metal impact specimens, tested at 00}\textrm{F}\mathrm{ and 720}\textrm{F
        (-170
    One - Rockwell "C" hardness traverse, across weld in-
        to base metal, various levels top-to-bottom
    One - Macro examination for soundness and penetration
        characteristics
    Weldment PD-4826:
    One - Edge-notched fracture toughness bend specimen,
        notched in weld
```


3.03 .3 (Continued)
 2nd Set (GMA-1)

Weldment PD-4830:
Five - Standard $0.505-1$ nch ($1.28-\mathrm{cm}$) longitudinal all-weld-metal tensile specimens

Seven - Standard Charpy V-notch impact specimens, transverse to weld and notched in weld HAZ, tested at $0^{\circ} \mathrm{F}$ and $72^{\circ} \mathrm{F}\left(-17^{\circ} \mathrm{C}\right.$ and $\left.22^{\circ} \mathrm{C}\right)$

Weldment PD-4831:
Six - Standard 0.505-inch (1.28-cm) tensile specimens, transverse to weld with weld HAZ contained in specimen reduced section area

Seven - Standard Charpy V-notch longitudinal all-weldmetal impact specimens, tested at $0^{\circ} \mathrm{F}$ and $72^{\circ} \mathrm{F}$ $\left(-17^{\circ} \mathrm{C}\right.$ and $\left.22^{\circ} \mathrm{C}\right)$

One - Rockwell "C" hardness traverse, across weld and into base metal, various levels top-tobottom

One - Macro examination for soundness and penetration characteristics

Weldment PD-4931
One - Edge-notched fracture toughness bend specimen, notched in weld

3.03 .3 (Continued)

Specimen locations and orfentations for each of these weldments are shown in Figures 12 and 13. Fracture toughness bend specimens are shown in Figure 14. Specimen loading during precracking and testing was as shown in Figure 8.

Upon the completion of testing of these first two sets of weldments parameters for the third and fourth sets were selected. These last two sets consisted of the following weldments:

3rd Set (GMA-2)
Weldment PD-4824, $6^{\prime \prime} \times 6^{\prime \prime} \times 48^{\prime \prime}(15.24-\mathrm{cm} \times 15.24-\mathrm{cm} \times$ 122.0-cm)

Weldment $\mathrm{PD}-4828,6^{\prime \prime} \times 6^{\prime \prime} \times 48^{\prime \prime}(15.24-\mathrm{cm} \times 15.24-\mathrm{cm} \mathrm{x}$ $122.0-\mathrm{cm})$

Weldment PD-4829, $6^{\prime \prime} \times 6^{\prime \prime} \times 108^{\prime \prime}(15.24-\mathrm{cm} \times 15.24-\mathrm{cm} x$ 274.3 cm)

4 th $\operatorname{Set}(G M A-3)$
Weldment PD-4833, $6^{\prime \prime} \times 6^{\prime \prime} \times 48^{\prime \prime}(15.24-\mathrm{cm} x$ 15.24-cm x $122.0-\mathrm{cm})$

Weldment PD-4834, 6" x $6^{\prime \prime} \times 48^{\prime \prime}(15.24-\mathrm{cm} \times 15.24-\mathrm{cm} x$ $\left.122.0^{-c m}\right)$

Weldment PD-4835, $6^{\prime \prime} \times 6^{\prime \prime} \times 108^{\prime \prime}$. (15.24-cm x $15 \cdot 24$-cm x $274.3-\mathrm{cm})$

The parameters selected are summarized in Tables VIII and IX. Both of these sets were welded using the GMA spray-arc welding process.

The major differences between each of these latter two sets of weldments and set GMA-1 were interpass temperature, welding heat input energy and welding current.

3.03 .3 (Continued)

Set GMA-1 was welded with a constant welding current and constant heat input energy with variations in interpass temperature. These variations were the result of using temperaturesensitive crayons to measure interpass temperature and taking temperature readings near (rather than right on) the point where a weld bead was to be subsequently deposited. This is usually the manner in which such crayons are used in order to avoid crayon material contaminating the weld. This method was found inadequate to control interpass temperature for 6-inch (15.24 cm) HY-150 weldments.

The interpass temperature of the third set of weldments (GMA-2) was therefore measured with a contact pyrometer, with temperature measurements being taken right at the point where the next weld bead was to be deposited. This resulted in a much better control of weld interpass temperature. In addition to this change, set GMA-2 was welded with several combinations of welding interpass temperature and heat input energy, each of which was expected to result in equivalent weld metal cooling rates and therefore equal weld metal yield strengths of approximately 140 Ksi (966 MPa).

The fourth set of weldments was produced using two different levels of welding heat input energy and essentially a fixed low interpass temperature. Initial welding was performed using a high heat input energy, selected to determine if the combination of a low

3.03 .3 (Continued)

interpass temperature and high neat input energy would result in hydrogen cracking or hydrogen embrittlement problems. A low heat input energy was used, however, to weld the outer, near-surface areas of this set of weldments. This combination of parameters was used in an attempt to attain a high weld metal yield strength from specimens taken from these areas. No previously used combination had consistently provided high i.e., $140 \mathrm{KSI}(966 \mathrm{MPa})$, weld metal yield strengths in these areas. Upon completion of welding, and after a seven-day or longer waiting period had elapsed, each of these weldments was magnetic particle, liquid penetrant, x-ray and ultrasonically inspected. The weldments were then destructively tested as follows: 3rd Set (GMA-2)

Weldment PD-4824:
Six - Standard 0.505-inch (1.28-cm) tensile specimens, transverse to weld with weld HAZ contained in specimen reduced' section area

Seven - Standard Charpy V-notch longitudinal all-weld-metal impact specimens, tested at $0^{\circ} \mathrm{F}$ and $72^{\circ} \mathrm{F}\left(-17^{\circ} \mathrm{C}\right.$ and $\left.22^{\circ} \mathrm{C}\right)$

One - Rockwell "C" hardness test, with traverses across weld, along HAZ and into base metal, at various levels top-to-bottom.

One - Macro examination for soundness and penetration characteristics
3.03 .3 (Continued)

Weldment PD-4824 (Continued):
Two - Chemical analyses of. as-deposited weld metal, from broken tensile specimens

Weldment PD-4828:
Five - Standard 0.505 -inch (1.28 cm) longitudinal all-weld-metal tensile specimens

Three - Standard 0.252 -inch (0.64 cm) longitudinal all-weld-metal tensile specimens

Seven - Standard Charpy V-notch impact specimens, transverse to weld and notched in weld HAZ, tested at $0^{\circ} \mathrm{F}$ and $72^{\circ} \mathrm{F}\left(-17^{\circ} \mathrm{C}\right.$ and $\left.22^{\circ} \mathrm{C}\right)$

Weldment PD-4829:
One - Edge-notched fracture toughness bend specimen, notched in weld

4 th set (GMA-3)
Weldment PD-4833:
Five - Standard 0.505 -inch (1.28 cm) longitudinal all-weld-metal tensile specimens

Seven - Standard Charpy V-notch impact specimens, transverse to weld and notched in weld HAZ, tested at $0^{\circ} \mathrm{F}$ and $72^{\circ} \mathrm{F}\left(-17^{\circ} \mathrm{C}\right.$ and $\left.22^{\circ} \mathrm{C}\right)$

One - Rockwell "C" hardness test, with traverses across weld or various levels, surface-tosurface

3.03 .3 (Continued)

Weldment PD	-4833 (Continued) :
One -	Macro examination for soundness and penetra-
	tion characteristics

Weldment PD-4834:
Five - Standard 0.505 -inch (1.28 cm) tensile specimens transverse to weld with weld HAZ contained in specimen reduced section area

Seven - Standard Charpy V-notch impact specimens, transverse to weld and notched in weld HAZ, tested at $0^{\circ} \mathrm{F}$ and $72^{\circ} \mathrm{F}\left(-17^{\circ} \mathrm{C}\right.$ and $\left.22^{\circ} \mathrm{C}\right)$

One - Macro examination for soundness and penetration characteristics

One - Rockwell "C" hardness test, with traverses across weld at various levels, surface-tosurface

Weldment PD-4835:
One - Edge-notched fracture toughness bend specimen, notched in weld

After testing of these last two sets of weldments was completed, all Task III test data was analyzed and an optimum low-cost HY150 welding procedure was selected for use and evaluation in Task IV of this program.

3.0 (Continued)

3.4 TASK IV - OPTIMIZATION OF WELDING METHODS

This program was terminated after all Phase III work was successfully completed.

4.0 RESULTS AND DISCUSSION

4.1 TASK I

The results of Task I indicated the attainment of a $140,000 \mathrm{psi}$ (966 MPa) minimum yield strength in $6-1 \mathrm{nch}$ (15.24 cm) thick HY150 plate would require slight modifications to the chemical composition specified in MIL-S-24371, accurate control of plate chemical composition and an accelerated quench from the austenitizing temperature. An increase appeared to be necessary in plate carbon content, from the normally specified 0.12% maximum to 0.13% maximum. In addition, it appeared necessary to maintain all other elements tending to increase hardenability or toughness at mid-range levels or higher, and to limit the amount of sulfur to a maximum of 0.010%. All of these changes were incorporated into the chemical composition requirements specified when the HY-150 base plate used in this program was ordered.

The review of available information relating to SMA or GMA welding HY-150 steel indicated several potential problem areas. First, only one SMA welding electrode manufacturer, the McKay Company, had been successful in developing an electrode which had the capability to provide $140,000 \mathrm{psi}(966 \mathrm{MPa})$ minimum yield strengths with $50 \mathrm{ft} .-\mathrm{lbs}$. (68 joules) or greater impact energy at $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$.

Second, the operability of this electrode was not well proven.

4.0 4.1 (Continued)

A third, and more important problem was that this electrode had not been used to weld heavy section plate material or joints that were under high restraint. This was a cause for concern because one of the major problems in SMA welding HY-150 steel is hydrogeninduced cold cracking. (4) This cracking typically occurs a considerable time, hours and sometimes days, after a weld has been completed and allowed to cool. Under otherwise equal conditions, such cracking is most likely to occur when a weldment is highly restrained or where thick sections are being welded. Water, in the form of moisture in SMA welding electrode coatings, can cause such cracking problems. Specification MI-30CE/1, invoked on the SMA welding electrodes purchased for use in this program, restricts the maximum moisture content to 0.10%, by weight. This is less than the 0.20% more commonly specified for SMA electrodes used to weld other quenched and tempered steels, such as HY-80.

A fourth area of concern was that limited data from tests conduc-
ed by the Electric Boat division have indicated hydrogen embrittlement can occur under certain conditions in HY-150 weldments using the spray-arc GMA welding process.

4.0 (Continued)

4.2 TASK II

The results of $U . S$. Steel and E. B. division chemical analyses of the two base plates produced for use in this program are given in Table I. Each of these plates can be seen to have met the specified chemical composition requirements, except that the phosphorous content was $0.001-0.002 \%$ high on check analysis. Base plate tensile properties are summarized in Table X, and Charpy V-notch impact test results are shown in Tables XI and XII. CVN impact energy vs. temperature curves for specimens from each master plate are shown in Figures 15 and 16. Impact energy begins to drop at temperatures below approximately $72^{\circ} \mathrm{F}$ $\left(22^{\circ} \mathrm{C}\right)$. At $-200^{\circ} \mathrm{F}\left(-128^{\circ} \mathrm{C}\right)$, CVN impact energy had dropped to approximately 20 ft.-lbs. (27 joules).

Yield strengths for these plates were reported by U. S. Steel as ranging from 138,620 to $144,540 \mathrm{psi}(956 \mathrm{MPa}$ to 997 MPa) for plate F 4602 and from 139,870 to $140,470 \mathrm{psi}$ (965 MPa to 969 MPa) for plate F 4603 , for specimens tested transverse to the major direction of rolling and taken at the plate mid-thickness. These specimens were taken from excess material at each end of each plate, prior to trimming the plates to final size. Similar tests performed by the Electric Boat division using specimens taken from pieces PD-12BM (plate F4602) and PD-13BM (plate F4603) indicated transverse mid-thickness yield strengths of $135,500 \mathrm{psi}$

4.04 .2 (Continued)

(935 MPa) and $139,000 \mathrm{psi}(959 \mathrm{MPa})$. The goal of a $140,000 \mathrm{psi}$ (966 MPa) minimum 0.2% offset yield strength was thus not attained. It is felt, however, that such a yield strength level could have been attained if a slightly more severe quench could have been applied to these plates after austenitizing.

Tables XI and XII summarize the results of U. S. Steel and Electric Boat division Charpy V-notch (CVN) impact tests of transverse and longitudinal specimens taken from mid-thickness areas of each plate and tested at various temperatures. CVN impact temperature transition curves are shown in Figures 15 and 16. MIL-S-24371 requires the average of such transverse specimens to be not less that $60 \mathrm{ft} .-1 \mathrm{bs}$. (81.6 joules) at each of two temperatures, $70^{\circ} \mathrm{F}\left(21^{\circ} \mathrm{C}\right)$ and $0^{\circ} \mathrm{F}\left(-17^{\circ} \mathrm{C}\right)$. Average test results reported by U. S. Steel were 52 ft . -lbs. (70.5 joules) at $72^{\circ} \mathrm{F}$ $\left(22^{\circ} \mathrm{C}\right)$ and $50 \mathrm{ft} .-\mathrm{lbs}$. (68 joules) at $0^{\circ} \mathrm{F}\left(-17^{\circ} \mathrm{C}\right.$) for plate F 4602 and $62 \mathrm{ft} .-1 \mathrm{bs} .(84.4$ joules $)$ at $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$ and $54 \mathrm{ft} .-\mathrm{lbs}$. (73.4 joules) at $0^{\circ} \mathrm{F}\left(-17^{\circ} \mathrm{C}\right)$ for plate F 4603 . Test results reported for other specimens which were similar but tested longitudinal to the major direction of rolling were 61 and $58 \mathrm{ft} .-1 \mathrm{bs}$. (83 and 79 joules) at $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$ and $0^{\circ} \mathrm{F}\left(-17^{\circ} \mathrm{C}\right)$, respectively for plate F 4602 . For plate $\mathrm{F} 4603,72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$ and $0^{\circ} \mathrm{F}\left(-17^{\circ} \mathrm{C}\right)$ values were 71 and $59 \mathrm{ft} .-1 \mathrm{bs}$. (96.5 and 80.2 joules), respectively.

4.04 .2 (Continued)

Tests performed by the Electric Boat division showed transverse specimen impact values of 62 and $44 \mathrm{ft} .-\mathrm{lbs}$. (84.3 and 59.8 joules) at $76^{\circ} \mathrm{F}\left(24^{\circ} \mathrm{C}\right)$ and $0^{\circ} \mathrm{F}\left(-17^{\circ} \mathrm{C}\right)$, respectively, for plate F4602. Plate F4603 was tested only for transverse direction impact properties. Test results were 65 and $52 \mathrm{ft} .-\mathrm{lbs}$. (88.5 and 70.7 joules) at $76^{\circ} \mathrm{F}\left(24.4^{\circ} \mathrm{C}\right)$ and $0^{\circ} \mathrm{F}\left(-17^{\circ} \mathrm{C}\right)$, respectively. The fact that plate F 4603 exhibited mid-thickness impact properties which were superior to those of plate F 4602 while also exhibiting higher yield strengths could be an indication that the mid-thickness region of plate F 4602 was quenched less severely and consisted of a more baintic structure than the midthickness region of plate F4603. At equivalent strengths, bainite is typically less tough than tempered martensite. In addition, plate 54603 was swung lengthwise in the quench tank during mill heat treating, and appeared to have been more severely quenched than plate F 4602 , which was lowered into the quench tank and bounced slightly but otherwise not moved while submerged. A less severe quench would be more likely to result in the formation of bainite in mid-thickness regions of such heavy plates.

Photomicrographs of samples from near-surface and mid-thickness areas of plate 54602 are shown in Figure 17. A greater amount of bainite can be seen in the photomicrograph of the mid-thickness area.

4.04 .2 (Continued)

The results of hardness traverses made with a Rockwell hardness tester parallel to the plate surfaces at five locations through the thickness, i.e., near the top and bottom surfaces, at the plate mid-thickness and half-way between the mid-thickness and each outer surface - indicate no significant difference in hardness through the thickness of plate 54602 . One set of such hardness traverses was made on the base metal of each of four weldments, PD-4824, PD-4827, PD-4831 and PD-4834. All of these pieces of base metal came from plate F4602 and were located as previously shown in Figure 4.

A maximum difference in hardness of 5.2 points Rockwell "C" was observed between the top and bottom surfaces of base plate in specimen PD-4834. Specimens PD-4824 and PD-4827 had nearly the same hardness on each surface, and specimen PD-4831 exhibited a difference of only 2.5 points Rockwell "C". The maximum variation in hardness through the thickness of any specimen other than PD-4834 was 2.5 points Rackwell "C". Average hardness readings taken through the thickness for each of these four specimens are summarized below:

HARDNESS VARIATIONS THROUGH THICKNESS

	$\underline{\mathrm{PD} 4824}$	$\underline{\text { PD4827 }}$	PD4831	PD4834
Top	34.7	36.5	33.8	35.9
Top Center	35.2	35.7	34.8	35.7
Center	33.3	34.8	33.8	36.7
Bottom Center	33.1	34.1	35.4	37.9
Bottom	35.2	35.9	36.3	40.9

4.04 .2 (Continued)

In this study of base metal hardness, only those points well removed from the weld and heat-affected-zones were used. Readings from at least six points of each traverse were used in calculating each of the average hardness values shown. Additional information and data on base metal hardness test results are presented and discussed in relation to weldment hardness test results in Section 4.3 .

Initial attempts to determine an austenitic grain size for the HY-150 base plate used in this program were unsuccessful. The carburizing method outlined in ASTM Method E-ll2 for low carbon alloy steel did not reveal the austenitic grain boundaries. At the suggestion of a U. S. Steel metallurgist, the carburized specimen was heated to $900^{\circ} \mathrm{F}-925^{\circ} \mathrm{F}\left(482^{\circ} \mathrm{C}-496^{\circ} \mathrm{C}\right)$, held for 12 hours at this temperature and then water quenched. After a surface of the specimen was polished, it was etched in an aqueous solution of picric acid and sodium tridecylbenzene sulfonate. The prior austenite grains were delineated, but were so fine that resolution could be obtained only at 400X, and only the grain boundaries within the carburized surface zone were revealed by this technique. The " Q " correction factor, described in Note 2 of E-1l2 was used to convert the grain size measured at 400 X to the estimated ASTM size \#10.5, which is in terms of measurement at 100X. Average diameter of the grains is 0.00944 mm, per Table 2 of Method E-112.

4.04 .2 (Continued)

The large size and high-load requirements of the base metal fracture toughness test specimens made it preferable to fa-tigue-precrack and test them at the Fritz Engineering Laboratory of Lehigh University, Bethlehem, Pa., where sufficiently large testing equipment was available.

Precracking of the specimens at the root of the notch was accomplished with the specimen mounted in a testing frame as a cantilever beam, shown in Figure 18. A hydraulic piston attached between the test frame and the free end of the specimen provided a controllable cyclic force.

The fatigue precrack contained in specimen PD-3BMK initiated at 32,000 cycles, and was completed at 352,000 cycles. The crack was extended about 2 -inches $(5.08 \mathrm{~cm})$ in depth. The maximum stress intensity factor $K_{f I}$ at crack initiation was 59.2 Ksi $\sqrt{1 \mathrm{n}} .(65.1 \mathrm{MPa} \cdot \mathrm{m} \mathrm{I} / 2)$, and $\Delta \mathrm{K}_{\mathrm{fI}}$, the stress intensity range, was $54.3 \mathrm{Ksi} \sqrt{1 \mathrm{n}} .(59.7 \mathrm{MPa} \cdot \mathrm{m} 1 / 2)$. The maximum stress intensity factor at completion of the crack, $\mathrm{K}_{\mathrm{f}} \mathrm{F}$ was $44.3 \mathrm{Ksi} \sqrt{\text { in. }}(48.8 \mathrm{MPa} \cdot \mathrm{m} \mathrm{I} / 2)$, and the stress intensity range $\Delta K_{f F}$ was $37.7 \mathrm{Ksi} \sqrt{\text { in. }}(41.5 \mathrm{MPa} \cdot \mathrm{m} 1 / 2)$.

For specimen $P D-2 B M K$, the precrack initiated at 60,000 cycles and was completed by 577,600 cycles. Maximum stress intensity factor at crack initiation was $63.2 \mathrm{Ksi} \sqrt{\text { in. }}$ ($69.5 \mathrm{MPa} \cdot \mathrm{m} 1 / 2$) and $\Delta \mathrm{K}_{\mathrm{fI}}$ was $58.1 \mathrm{Ksi} \sqrt{1 \mathrm{n}} .(64 \mathrm{MPa} \cdot \mathrm{m} \mathrm{I} / 2)$. The maximum stress intensity factor at completion of the precrack was $43.6 \mathrm{Ksi} \sqrt{\text { in. }}(48 \mathrm{MPa} \cdot \mathrm{m} \mathrm{l} / 2)$, and $\Delta \mathrm{K}_{\mathrm{f}}$ at completion was 39.5 $\mathrm{Ksi} \sqrt{\mathrm{In}} .(43.4 \mathrm{MPa} \cdot \mathrm{m} 1 / 2)$.

4.04 .2 (Continued)

The precrack in specimen $P D-3 B M K$ was somewhat elliptical in shape but did meet the criteria for uniformity specified in Para. 7.2.3 of ASTM Method E-399. The precrack in specimen PD-2BMK failed to meet the requirements for uniformity. A double-lobed precrack developed because of a lamination at about $1 / 4$ thickness through the plate, and the precrack did not extend to the surface of the specimen on one side. Precrack shapes and dimensional details for these specimens are shown in Figures 19 and 20.

Both specimens exhibited mixed-mode fracture in the toughness test. For each specimen a large plastic zone developed ahead of the fatigue crack, and shear lips, each one about one-fifth of the specimen thickness, formed at the specimen surfaces as shown in Figure 21.

Stress intensity factors, K_{Q}, were calculated using the loads at the intersection of the 5% secant offset line with the load vs. crack-opening-displacement curve, which was obtained autographically during the rising load fracture tests. Calculated values were $270 \mathrm{Ksi} \sqrt{\text { in. }}(297 \mathrm{MPa} \cdot \mathrm{m} 1 / 2)$ for specimen $\mathrm{PD}-3 \mathrm{BMK}$ and $214.5 \mathrm{Ksi}-\sqrt{1 \mathrm{n}} .(236.2 \mathrm{MPa} \cdot \mathrm{m} 1 / 2)$ for $\mathrm{PD}-2 \mathrm{BMK}$. In order for these values to be considered as valid $K_{I C}$ determinations in accordance with ASTM Method E-399, the following condition must be satisfied:

$$
\begin{aligned}
& 4.04 .2 \quad \text { (Continued) } \\
& b=2.5\left[\frac{K_{\text {IC Max }}}{\sigma \text { Y.s. }}\right]^{2} \\
& \text { or, as rearranged } K_{\text {Max. }}=\sigma y . s \cdot \sqrt{\frac{b}{2.5}}
\end{aligned}
$$

$$
\text { Where: } \begin{aligned}
\mathrm{b} & =\text { Specimen thickness, inches }(\mathrm{cm}) \\
\mathrm{K}= & \text { Stress intensity factor measured, psi } \sqrt{\text { in. }} \begin{aligned}
& \\
&\sigma \text { MPa } \cdot \mathrm{m} 1 / 2)
\end{aligned} \\
\sigma . \mathrm{s} . & =\text { Material yield strength, psi (MPa) }
\end{aligned}
$$

The maximum K_{Q} values which can be measured by specimen PD-2BMK and PD-3BMK and yet be valid $K_{I C}$ determinations are therefore:

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{Max.},} \mathrm{PD}-2 \mathrm{BMK}=133.5 \sqrt{\frac{6}{2.5}}=207 \mathrm{Ksi} \sqrt{\mathrm{in}} .(228 \mathrm{MPa} \cdot \mathrm{~m} \mathrm{l} / 2) \\
& \mathrm{K}_{\mathrm{Max} ., \mathrm{PD}-3 \mathrm{BMK}}=140.0 \sqrt{\frac{6}{2.5}}=217 \mathrm{Ksi} \sqrt{\mathrm{in}} .(239 \mathrm{MPa} \cdot \mathrm{~m} 1 / 2)
\end{aligned}
$$

Neither specimen appear to meet the requirements of ASTM E-399 for a valid $K_{I C}$ determination. In addition, specimen PD-2BNK does not meet the ASTM criteria because of the poorly formed fatigue crack front. The fracture toughness values should be considered only as engineering toughness values, therefore, and not as critical stress intensity (K_{IC}) values.

A summary of base metal fracture toughness test data is presented in Table XIII.

```
4.0 4.2 (Continued)
```

The load-displacement diagrams shown in Figures 22 and 23 for each of the two base metal fracture toughness tests were similar to the Type I curve shown in Figure 8 of ASTM E-399, except that final fracture of the specimens occurred well after the maximum load had been attained, and considerable plastic deformation of the metal was accompanying extension of the crack.

When a material fails by plastic instability in a fracture test, the data obtained can be used in engineering design if the data is presented as a curve of resistance to crack extension vs. effective crack depth. This data plot is commonly known as an "R-Curve". By the use of an R-curve, the stress required to cause a crack of given depth in a structure to propagate plastically in an unstable manner (essentially, to cause failure of the structure) can be determined.

R-curves for these two base plate KIC toughness specimens and four Task III weldment specimens have been plotted in Figure 24. Critical effective crack depths (crack plus plastic zone radius) have been determined and plotted in each case for an applied stress equal to the nominal yield strength of the material, $140 \mathrm{Ksi}(966 \mathrm{MPa})$.

```
4.0 4.2 (Continued)
```

These curves were constructed by the substitution of numerical values obtained from specimen fracture toughness tests into the following equation:

$$
R=\frac{P L}{B W 3 / 2} \quad f(a / w)^{l / 2}
$$

Where:

$$
\begin{aligned}
R= & \text { The crack extension resistance, Ksi } \sqrt{\text { In. }}(\mathrm{MPa} \cdot \mathrm{~m} 1 / 2) \\
\mathrm{P}= & \text { Load in lbs. } \\
\mathrm{L}= & \text { Distance between inner and outer load points in } \\
& 4 \text {-point loading, inches (cm) } \\
B= & \text { Thickness of specimen, inches (cm) } \\
W= & \text { Width of specimen, inches (cm) }
\end{aligned}
$$

The effective crack depth "a" was derived from examination of the test record. The crack extention resistance curve is a plot of the computed "R" vs. the effective crack depth. The mechanics of deriving "a" from the test data have been explained by Vazquez (5)
and Paris.

The critical crack depth for any applied stress can be determined by constructing the curve of crack extension resistance vs. effective crack depth for the applied stress of interest so that it is tangent to the material response curve.

The equation for the constant stress curve is:

$$
\sigma=R / y \sqrt{a}
$$

Where:
$R=$ The crack-extension resistance, $\mathrm{Ksi} \sqrt{\text { in }}(\mathrm{MPa} \cdot \mathrm{m} 1 / 2)$
$a=$ Crack depth, inches (cm)
$y=$ Function of specimen geometry and crack depth to specimen width (a/w) ratio.

4.04 .2 (Continued)

Numerical values have been computed for "y" for various "a/w" ratios and the several common configurations of fracture toughness specimens. These values have been plotted in "K" calibration curves. (5)

The point of tangency denotes the critical crack depth. At less than the critical crack depth, the resistance to crack extention of the material is greater than the energy available to extend the crack in a structure under load. At the critical point, the crack extending-force equals the material resistance to crack extension. At a depth greater than critical, there is sufficient energy to overcome the resistance to crack growth, and the crack extends to the limit of the structure, unless the load is removed. Since the energy consumption is high, due to large plastic straining, the crack does not run at the velocities encountered in plane strain (brittle) fracture.

Dissertations on material response curves are given in the aforementioned paper by Vazquez and Paris, and also by (6) Srawley and Brown.
4.3 TASK III

Preliminary Weldments

Weldment PD-4837 is shown partially completed in Figure 25. The weldment can be seen to be edge fillet welded to the welding table top to assure minimum transverse or angular shrinkage and maximum weldment restraint. This was desirable since

4.04 .3 (Continued)

one of the reasons for producing these weldments was to determine whether hydrogen cracking problems could be encountered when welds were made under high restraint using the electrodes purchased for use in this program. When weldment PD-4836 was welded it was similarly put under high restraint.

The results of nondestructive tests of these weldments did not reveal any rejectable defects. No defects. were detected by radiography and only two small indications, acceptable per NAVSHIPS 0900-006-3010, were detected in each weldment during ultrasonic testing. IOX macro-examinations of these weldments revealed no visible defects. Photographs of each of the two macro sections examined are shown in Figure 26. Results of destructive tests are summarized in Tables XIV through XVI. The following observations or conclusions were made based on the results of these nondestructive and destructive tests:
a. The weldors, 1.e.- welding equipment operators, who produced these weldments were capable and qualified to weld HY-150 steel using the particular processes employed.
b. The SMA and GMA electrodes purchased for use in this program were not prone to hydrogen cracking under the conditions employed to produce these test weldments. These conditions, however, were not as severe as those which would be encountered in subsequent Task IV weldments. Thus, although it had been demonstrated that

4.04 .3 b. (Continued)

the electrodes were resistant to hydrogen cracking under high restraint, it had not been definitely established that hydrogen cracking would not be encountered when subsequent Task III and IV weldments were produced.
c. The electrodes purchased for use in this program were capable of producing welds of $140,000 \mathrm{psi}(966 \mathrm{MPa})$ minimum yield strength and 50 ft .-1bs. (68 Joules) minimum Charpy V-notch impact energy at $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$.
d. Use of the compound-angle weld joint design originally proposed for Task III and Task IV weldments did not appear to be necessary. The 45° included angle doublevee weld prep used in producing the two preliminary weld wire evaluation weldments was found adequate and more economical. Both of these weld joint designs are shown in Figure 28.
e. For each weldment, the initial side welded appeared • to exhibit slightly higher strength and lower impact energy than the second side. Based on the results from only these two weldments it was not possible to establish whether this was actually happening or if other variables, such as variations in weld bead size and/or welding heat input energies were actually the cause.
4.04 .3 (Continued)
f. Afl-weld-metal tensile and Charpy specimens indicated a loss in yield strength and an increase in impact energy for weld metal deposited in outer, near-surface areas of the weld. Again, based on only these two weldments a conclusive determination could not be made as to the cause of these differences.

Based on the preceeding observations and conclusions and the results of Task I, parameters were selected for use in producing the first two sets of 6 -inch $\times 6$-inch ($15.24 \mathrm{~cm} \times 15.24 \mathrm{~cm}$) weldments.

1st Set (SMA-1)
The parameters previously shown in Table VI were selected for use in producing this set of weldments on the basis of several considerations. The welding current and arc voltage were selected for maximum operability based on experience gained from producing weldment PD-4836. Although the $200^{\circ} \mathrm{F}$ ($93^{\circ} \mathrm{C}$) preheat temperature used in producing PD-4836 had appeared adequate for that particular weldment, a higher preheat was felt necessary for these 6 -inch (15.24 cm) thick weldments. Both the increase in weldment thickness and the fact that the base plate was HY-150 instead of HY-80 would increase the amount of restraint imposed on the weld metal of these weldments. A $250^{\circ} \mathrm{F}$ ($121^{\circ} \mathrm{C}$) preheat was, therefore, selected.

4.04 .3 (Continued)

Interpass temperature was intended to range between $250^{\circ} \mathrm{F}\left(121^{\circ} \mathrm{C}\right.$) and $275^{\circ} \mathrm{F}\left(135^{\circ} \mathrm{C}\right)$, with Tempil sticks being used to check weldment temperatures at various points within approximately 2-inches (5.08 cm) of, but not on, previously deposited weld metal or the weld-prep surfaces prior to the deposition of each layer of weld beads. This method of measurement, although adequate for weldments of up to approximately a $2-1$ nch (5.08 cm) thickness, was found inadequate for 6 -inch (15.24 cm) thick weldments. Measurements of weldment temperatures taken near the completion of the second set of weldments, i.e., weldments PD-4830, PD-4831 and PD-4931, indicated a contact pyrometer should be used to measure preheat temperature prior to the deposition of each weld bead, directly on the surface over which the bead would be deposited.

The use of a higher preheat temperature for this first set of $6^{\prime \prime} \times 6^{\prime \prime}$ ($15.24 \mathrm{~cm} \times 15.24 \mathrm{~cm}$) weldments was felt to require the use of a lower weld heat input energy if no loss of weld yield strength was to result. Consequently, weld heat input energy was typically limited to a maximum of 30,000 joules/in. (11,800 joules/cm), compared to 35,000 joules $/ 1$ nch (13,800 joules $/ \mathrm{cm}$) for weldment PD-4836. Some initial weld beads were made using heat Input energies of approximately 47,000 joules/inch (18,500 joules $/ \mathrm{cm}$). These beads were intended for testing and comparison with outer, low heat input areas.

```
4.0 4.3 (Continued)
```

No special effort was made to control weld joint geometry accurately or to obtain good weld joint fit up when these weldments were produced. The mismatch shown in Figure 30 is typical of all weldments produced in this program. In some instances, mismatch was worse than shown in this figure.

Results of nondestructive tests of these weldments indicated one rejectable defect was contained in PD-4826. This defect was detected by ultrasonic inspection but not by radiographic or M.P. inspection. Based on U.T. results, it was approximately 2-inches (5.08 cm) long and equivalent to approximately a 3/64inch (0.11 cm) or larger diameter cylinder. It was not observed, however, in the fracture surfaces exposed after the weldment was broken in half during fracture toughness testing. Ultrasonic inspection also detected two small, acceptable, indications in weldment PD-4825. No. U.T. indications were observed during testing of PD-4827.

The results of mechanical property tests performed on this set of weldments are summarized in Tables XVII and XVIII. Welding heat input energy data for the weld beads contained in those areas from which tensile specimens were taken are summarized in Table XIX.
4.04 .3 (Continued)

These data indicate that the yield strength of longitudinal all-weld-metal specimens taken from these weldments varied from a low $134.5 \mathrm{Ksi}(928 \mathrm{MPa})$ for specimens taken from outer, near surface areas to a high of $143.0 \mathrm{Ksi}(987 \mathrm{MPa})$ for specimens taken from the mid-thickness area. This difference is considered due principally to the differing preheat temperatures which were used in completing these weldments. Where higher preheat temperatures were employed, weld metal yield strength decreased. In the case of the mid-thickness specimen PD-4825-T3 a second factor, weld metal dilution, is also considered to have been significant. The carbon content of typical as-deposited weld metal was between 0.08 and 0.09 percent, while that of the base plate was 0.10 to 0.11 percent. Carbon strongly affects the strength of HY-150 weld metal and enough dilution was probably occurring in mid-thickness weld beads to increase yield and tensile strengths.

The transverse tensile test specimens, which include areas of weld metal, heat-affected-zone and base metal in the reduced section areas all broke in the weld metal. The strengths corelated quite well with the strengths indicated by the longitudinal all-weld-metal tensile specimens taken from corresponding weld areas.

As shown in Table XVIII, Charpy V-notch impact energies obtained from specimens taken from these weldments were outstanding. The

4.04 .3 (Continued)

average $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$ impact energy from specimens notched in the weld HAZ was $75 \mathrm{ft} .-1 \mathrm{lbs}$. (102 joules) and $63 \mathrm{ft}$. . 1 lbs . (85.7 joules) at $0^{\circ} \mathrm{F}\left(-17^{\circ} \mathrm{C}\right)$. The averege all-weld-metal impact energy at $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$ was considerably f . gher - $98 \mathrm{ft} .-1 \mathrm{bs}$. (133 foules) and 91 ft . -1 lbs . (124 joules) at $0^{\circ} \mathrm{F}\left(-17^{\circ} \mathrm{C}\right)$. These values are quite impressive considering the relatively high strength of this material and that they were obtained from weld metal deposited using the SMA process.

A photomacrograph through PD-4827 is shown in Figure 29. A hardness traverse pattern is shown in Figure 30; with Rc hardness values for the various test points summarized in Table $X X$.

The engineering fracture toughness, K_{Q}, of weldment PD-4826 was difficult to establish because of precrack shape irregularities and the fact that the 5% secant offset method recommended in ASTM Method E-399-70T is quite conservative. Two different approaches were followed. The first of these was based on the use of a 5% secant offset load as recommended in the ASTM Method and an assumed crack depth equal to the maximum actual crack depth measured after fracture. Using this approach, K_{Q} was estimated as $194 \mathrm{Ksi} \sqrt{\text { In. }}(214 \mathrm{MPa} \cdot \mathrm{m} 1 / 2)$. This value is, as previously indicated, quite conservative. It is based on a method of testing which is intended to somewhat under-rate the toughness of a material. It is not necessarily the closest estimate of the useful engineering toughness of the material. These values are recommended, however, as a basis for engineering or design

4.04 .3 (Continued)

calculations. Paris recommended a somewhat different approach which is belleved to more accurately measure the K_{Q} engineering fracture toughness. This approach was based on the use of compliance calibrations determined by Gross, Roberts and Srawley of NASA Lewis Research Center . A secant line was drawn from the maximum load point in the load-displacement record to the origin and an effective crack size was computed using the compliance calibrations. This effective crack size and the maximum load were then used in computing a K_{Q} value from the usual formula for the specimen. The value of K_{Q} determined by this crack size by compliance method was $287 \mathrm{Ksi} \sqrt{\text { in }}$. ($316 \mathrm{MPa}, \mathrm{m} 1 / 2$), indicating outstanding toughness. The fracture surface and shape of the precracked area of specimen PD-4826 is shown in Figure 31, along with pertinent dimensional data. The load displacement record of this specimen is shown in Figure 32. The same phenomonon of fatigue pre-crack irregularity exhibited by the HY-150 welded specimens was also encountered in previous fracture toughness testing of 12% nickel-maraging steel weldments. The problem has been reported to be with residual welding stresses, which are tensile in direction near the surface of the weld, and compressive at the center of the weld. Under tensile loading in Mode I, for fatigue crack development, load stresses and residual stresses at the weld surface are additive in a tensile direction, which encourages crack initiation. At the weld center, the tensile stress due to load

4.04 .3 (Continued)

may not overcome the compressive residual stress; or if it does, may induce only weak tensile stress, below the endurance limit. Hence fatigue cracking is confined to the areas of residual tensile stress. Thermal stress relief, or mechanical working can be used to reduce or re-distribute residual stress and improve the probability for generating a straight fatigue crack front. Such processing may, however, affect the fracture toughness characteristics of the weld as it will be used in service.

2nd Set (GMA-1)
This set of weldments was produced using the conditions and parameters previously shown in Table VII. As in the case of the first set of SMA weldments, the GMA welding parameters for this set of weldments were selected based on results obtained from producing the initial weld wire evaluation weldment, PD-4837. Since these parameters had appeared to give fairly good results when used to produce PD-4837, they were selected without significant change for use in GMA welding this first set of 6 -inch x 6 -inch ($15.24 \mathrm{~cm} \times 15.25 \mathrm{~cm}$) weldments.

```
4.0 4.3 (Continued)
```

Interpass temperature was intended to range between $250^{\circ} \mathrm{F}$ ($121^{\circ} \mathrm{C}$) and $275^{\circ} \mathrm{F}$ ($135^{\circ} \mathrm{C}$), with tempil sticks being used to check weldment temperatures. The problems of monitoring interpass temperature in this manner were previously described in the discussion of results of the first set of SMA weldments, SMA-1. Consequently, actual interpass temperatures for this first set of GMA weldments varied considerably as the weldments were completed. This variation is indicated, along with tensile test results, in Table XXI.

As in the case of the first set of SMA weldments, SMA-1, no special effort was made to control weld joint geometry accurately or to obtain good weld joint fit-up when these weldments were produced.

Results of nondestructive tests of these weldments indicated no rejectable defects.

The results of tensile tests of these weldments, shown in Table XX, indicate the yield strength of longitudinal all-weld-metal spec imens varied from $137.8 \mathrm{Ksi}(951 \mathrm{MPa})$ to 150.0 Ksi (1035 MPa). The higher strengths were obtained for lower preheat temperatures. Weld metal dilution effects are also considered to have contributed to the high strength of the midthickness specimen PD-4830-T3.

4.04 .3 (Continued)

The transverse tensile test specimens tended to break in base metal areas where corresponding all-weld-metal tensile strengths had been greater than the strength of the base plate. Where corresponding all-weld-metal tensile strengths had been less than the strength of the base plate, failure occurred in weld metal. No indication was observed which would indicate that weld HAZ areas were weaker than the base plate or weld metal.

The results of Charpy V-notch impact tests of weld metal and weld HAZ areas are summarized in Table XXII. The average $72^{\circ} \mathrm{F}$ $\left(22^{\circ} \mathrm{C}\right)$ impact energy for all-weld-metal specimens was $58 \mathrm{ft} .-1 \mathrm{bs}$. (79 joules), and 54 ft .-lbs. (73 joules) at $0^{\circ} \mathrm{F}\left(-17^{\circ} \mathrm{C}\right)$. The The average $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$ impact energy for weld HAZ specimens was $80 \mathrm{ft} .-1 \mathrm{bs} .(109$ joules). Weldment heat input data are summarized in Table XXIII.

A photomacrograph of a section through weldment PD-4831 is shown in Figure 33 and a hardness traverse pattern through $P D-4831$ is shown in Figure 34; with Rockwell "C" hardness values for the various test points being summarized in Table XXIV.

The engineering fracture toughness of weldment PD-4931 was calculated at $171.0 \mathrm{Ksi} \sqrt{\mathrm{in} .}(188 \mathrm{MPa} \cdot \mathrm{m} 1 / 2)$ using the ASTM 5% secant offset method of analysis and an assumed crack depth equal to the maximum actual crack detph as measured after fracture. Using the crack size by compliance method of analysis the toughness was estimated at $200 \mathrm{Ksi} \sqrt{1 \mathrm{n}} .(220 \mathrm{MPa} \cdot \mathrm{m} / \mathrm{L})$.
4.04 .3 (Continued)

The fracture surface and shape of the precracked area of specimen PD-4931 is shown in Figure 35, along with pertinent dimensional data. The load-displacement record of this specimen is shown in Figure 36.

3 rd Set (GMA-2)

The second set of GMA weldments was welded using the parameters shown in Table VIII. A constant interpass temperature and a welding heat input energy which was as low and uniform as possible were used. The objective was to determine whether the losses in the strength of outer weld areas observed in each set of previous weldments were related to changes in welding heat input energies and interpass temperatures or due to weldment thickness or weld metal dilution effects.

It appeared from previous work performed by the Electric Boat division that a $250^{\circ} \mathrm{F}$ ($121^{\circ} \mathrm{C}$) minimum preheat may be necessary to avoid possible hydrogen cracking problems, but it was also felt that a maximum interpass temperature of $280^{\circ} \mathrm{F}\left(137^{\circ} \mathrm{C}\right)$ was necessary if a minimum yield strength of 140 Ksi (966 MPa) was to be attained. This resulted in a $30^{\circ} \mathrm{F}\left(-1.1^{\circ} \mathrm{C}\right)$ range in which welding could be performed. For most weld passes, welding heat input energy was limited to $30 \mathrm{Kj} /$ in ($12 \mathrm{Kj} / \mathrm{cm}$) or less. It was felt that the parameters selected would result in the production of welds which would not be subject to hydrogen cracking while exhibiting a good combination of strength and toughness.

4.04 .3 (Continued)

Again, as for previously discussed weldments, no special effort was made to control weld joint geometry accurately or to obtain good weld joint fit-up when these weldments were produced.

The results of nondestructive tests of these weldments indicated no rejectable defects.

Tensile test results, summarized in Table XXV, indicate the yield strength of $0.505-1$ nch (1.28 cm) longitudinal all-weld-metal specimens varied from 130.3 Ksi (900 MPa) to 148.3 Ksi (1023 MPa). The high strength of specimen PD-4828-T3 was not surprising since other mid-thickness specimens from previously tested weldments had also exhibited exceptionally high strengths. The low strength of specimen PD-4828-Tl was, however, quite surprising - especially since the corresponding transverse tensile specimens PD-4824-TTI exhibited a higher tensile strength than any other such specimen taken from weldment PD-4824 except the mid-thickness specimen while finally breaking in the weld metal. Also, specimen PD-4924T5 was taken from weld metal deposited in a manner almost identical to PD-4824-Tl and yet this specimen exhibited a yield strength of 137.3 Ksi (947 MPa), very similar to that exhibited by specimens PD-4828-T2 and PD-4828-T4.

As a further investigation of these results a chemical analysis was performed on material from one half of specimen PD-4828-T1 and one half of specimen PD-4828-T2, and three additional 0.252inch (0.64 cm) diameter tensile specimens were removed from weldment PD-4828 and tested. The chemical analysis results, included as part of Table III, revealed a carbon content of only

4.04 .3 (Continued)

0.075 percent in the weld metal of PD-4828-Tl compared to 0.123 percent carbon content in PD-4828-T2. A check of the laboratory welding records for this weldment revealed the weld beads tested by Specimen PD-4828-Tl were made using weld wire from spool \#806, having a carbon content of 0.08 percent. The weld beads tested by specimen PD-4828-T2 were similarly found to have been made using weld wire from spool \#812, which had a carbon content of 0.09 percent. The lower carbon content of the weld wire used to deposit the weld beads tested by specimen PD-4828-T1 is felt to be the principal reason for the low yield and tensile strength exhibited by this specimen. The extra three 0.252 -inch (0.64 cm) tensile specimens exhibited yield strengths ranging from 136.3 Ksi (940 MPa) to 139.8 Ksi (964 MPa), similar to the strength exhibited by specimens PD-4828-T2, $-T 4$ and $-T 5$. Although the weld beads tested by two of these extra specimens were also deposited using weld wire from spool \#806, weld metal dilution by the relatively high carbon base plate material is felt to have occurred, thereby increasing the carbon content and keeping strength high.

The results of Charpy V-notch impact tests performed on these weldments are shown in Table XXVI. Transverse tests of weld HAZ areas averaged $84 \mathrm{ft} .-1 \mathrm{bs}$. (114 joules) at $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$ and 75 ft. -1 bs. (102 joules) at $0^{\circ} \mathrm{F}\left(-17^{\circ} \mathrm{C}\right.$). This was slightly higher than for either of the two previously completed sets of weldments. Longitudinal all-weld-metal Charpy specimens averaged $61 \mathrm{ft} .-1 \mathrm{bs}$. (83 joules) at $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$ and $63 \mathrm{ft} .-1 \mathrm{lbs}$. (86 joules) at $0^{\circ} \mathrm{F}$ $\left(-17^{\circ} \mathrm{C}\right)$. These values are higher than obtained from the previous
4.04 .3 (Continued)
set of GMA weldments (Set GMA-1) but not as good as obtained from the set of SMA weldments (SMA-1). Weldment heat input data are summarized in Table XXVII.

A photo-macrograph of a section through weldment PD-4824 is shown in Figure 37 and a hardness traverse pattern is shown in Figure 38; with the Rockwell "C" hardness values for the various test points being summarized in Table XXVIII.

The engineering fracture toughness of weldment PD-4829 was calculated as $187.5 \mathrm{Ksi} \sqrt{\mathrm{in}}$. ($206 \mathrm{MPa} \cdot \mathrm{m} \mathrm{l} / 2$) using the ASTM 5% secant offset method of analysis and an assumed crack depth equal to the maximum actual crack depth as measured after fracture. Using the crack size by Compliance method of analysis the toughness was estimated as $252 \mathrm{Ksi} \sqrt{\text { in. }}(278 \mathrm{MPa} \cdot \mathrm{m} \mathrm{1/2}$). This is substantially greater than for the specimen from the first set of GMA weldments (GMA-1), but not as good as obtained from the specimen from the set of weldments produced using the SMA welding process (SMA-1).

The fracture surface and shape of the precracked area of specimen PD-4829 is shown in Figure 39, along with pertinent dimensional data. The load-displacement record of this specimen is shown in Figure 40.

4.04 .3 (Continued)

4 th set (GMA-3)

The third set of GMA weldments was welded using the parameters shown in Table IX. The interpass temperature used for this set of weldments was considerably lower than that used in welding previously completed sets. Two different levels of heat input energies were used. Initially, welding was performed with a high heat input energy to determine if any problems of hydrogen embrittlement or hydrogen cracking would be encountered when high welding currents and high welding heat inputs were used with low preheat and interpass temperatures. The outer areas of these weldments were completed using a low heat input energy in an attempt to get maximum weld yield strength in these areas.

As in the case of all previously discussed weldments, no special effort was made to control weld joint geometry accurately or to obtain good weld joint fit-up when these weldments were produced.

The results of nondestructive tests of these weldments indicated no rejectable defects although occasional porosity was evident.

Tensile test results, summarized in Table XXIX indicate the weld metal yield strength of these weldments equaled or exceeded 145 Ksi (1001 MPa) for each specimen tested. One specimen, PD-4833-T3, taken from the low interpass, high heat input mid-thickness area of the weld exhibited a loss of elongation and a considerable drop in reduction of area. Also, a "spangle" or

4.04 .3 (Continued)

"fish-eye" was evident in the fracture surface. These factors were considered as an indication that some hydrogen embrittlement had occurred and that the use of a high heat input energy was detrimental to weld quality.

HAZ Charpy impact energies, summarized in Table XXX were all in excess of 50 ft .-lbs. (68 joules) and exceptionally good in the outer areas welded with the low heat input. All-weld metal charpy impact energies were also good, but still not equal to the values obtained from the first set of weldments (SMA-1). Welding heat input data was summarized in Table XXXI.

A photomacrograph of a section through weldment PD-4834 is shown in Figure 41 and a hardness traverse pattern is shown in Figure 42, with the R_{C} hardness values being summarized in Table XXXII.

Weldment PD-4835 was not properly precracked and an accurate estimate of the engineering fracture toughness could not be determined. The fracture surface and shape of the precracked area of this specimen are shown in Figure 43, along with pertinent dimensional data. The load-displacement record of this specimen is shown in Figure 44.

4.04 .3 (Continued)

It should be reiterated that the specific procedures utilized for welding the last two sets of GMA weldments were intended primarily to demonstrate that different combinations of welding interpass temperature and energy input would produce weld metal having comparable tensile and fracture toughness properties when these combinations of interpass temperature and energy input resulted in nearly equivalent weld metal cooling rates. Additionally, set GMA-3 was used to determine if welding with high energy input, i.e., wire feed speeds ranging from 250-264 ipm ($635 \mathrm{~cm} / \mathrm{pm}-670 \mathrm{~cm} / \mathrm{pm}$) and corresponding welding current ranging from $325-365$ amperes, would result in hydrogen cracking or hydrogen embrittlement.

These tests were not especially designed to establish the relationship between either yield strength or Charpy-V-notch energy $a b-$ sorption and cooling rate as a function of the energy input and preheat temperature utilized. However, an examination of the longitudinal tensile properties of the gas metal arc welds from all three sets of bars reveals that the properties obtained did not appear to follow the expected trend for this low alloy steel (10) (11) weld metal system. Other investigators have clearly demonstrated that the all-weld-metal tensile and yield strength can be expected to increase with an increasing cooling rate. Equations have been developed (10) which can be used to calculate

4.04 .3 (Continued)

the cooling rate from a specific temperature taking into account the metallurgical response of the particular alloying system, the effects of preheat and energy input.

As previously mentioned, the use of a contact pryometer for measuring interpass temperature on the last two sets of bars was considered to be more reliable than the use of tempil crayons used on the first two sets of bars. This was because the pre-heat/ Interpass temperature could be measured at the point of welding rather than outside the weld joint. Since current and voltage for all weld beads deposited were recorded on chart recorders, the method of determining energy input was also considered to be quite accurate. Therefore the tensile specimens $\mathrm{T}-1, \mathrm{~T}-2, \mathrm{~T}-4$ and T-5 from PD-4828 one of the 2nd set of GMA weldments were expected to have exhibited a minimum yield strength of 140 (10) KSI (966MPa). Dorschu has shown that a good approximation of the cooling rate of GMA welds can be calculated using the following expression:

$$
d T / d t\left(1000^{\circ} F\right)=M \frac{(T-T O)^{2}}{E}+D
$$

where:

$$
\begin{aligned}
\mathrm{dT} / \mathrm{dt} & =\text { Cooling rate }\left({ }^{\circ} \mathrm{F} / \mathrm{Sec} .\right)\left({ }^{\circ} \mathrm{C} / \mathrm{Sec} .\right) \mathrm{M} \text { and } \mathrm{D} \\
& \text { are constants } \\
\mathrm{T} & =\text { Temperature at which cooling rate is } \\
& \text { measured }\left(1000^{\circ} \mathrm{F}\right)\left(537^{\circ} \mathrm{C}\right) \\
\mathrm{TO} & =\text { Initial temperature of plate }\left({ }^{\circ} \mathrm{F}\right)\left({ }^{\circ} \mathrm{C}\right) \\
\mathrm{E} & =\text { Welding energy input }(\mathrm{KJ} / \mathrm{in})(\mathrm{KJ} / \mathrm{cm})
\end{aligned}
$$

4.04 .3 (Continued)

The cooling rate is seen to vary inversely with the energy input and directly with the square of the difference between the temperature at which the cooling rate is measured and the preheat temperature. Using the values of constants provided in reference (10) and sutstituting the values for $T o$ and E used in making the 2nd and 3 rd sets of GMA weldments into the above expression the calculated cooling rates for both are found to be in the order of $50^{\circ} \mathrm{F}\left(10^{\circ} \mathrm{C}\right) / \mathrm{sec}$. to $70^{\circ} \mathrm{F}\left(21^{\circ} \mathrm{C}\right) / \mathrm{sec}$. Accordingly, the yield strength of longitudinal tensile specimens taken from both sets of bars should have met or exceeded 140 KSI (966 MPa). The fact that all tensiles tested from PD-4833 (GMA-3) did and only one of the outer specimens from PD-4828 (GMA-2) exhibited a yield strength as high as 140 KSI (966 MPa) is not readily explained. However, this wide distribution of all-weld-metal yield strength values has on occasion been experienced by other investigators (2)(11) involved in GMA welding 2 -inch (5.07 cm) thick HY-150 plate, although where a sufficient number of specimens have been tested the relationship between yield strength and weld-metal cooling rate is clearly defined. This characteristic of the HY-150 weld metal yield strength to be influenced by cooling rate is also modified by such factors as its tempering behavior and changes in composition due to dilution.

4.04 .3 (Continued)

The Rockwell C hardness traverses, made on macro sections from bars PD-4824 and PD-4834 which were the corresponding bars for PD-4828 and PD-4833, i.e., they were welded at the same time under like conditions, reflect the variation in strength level achieved on the third and fourth sets of weldments. For example the hardness traverses on the outer portion of a macro from PD-4824 in the area corresponding to longitudinal tensiles T-1 and T-5 from PD-4828 showed the weld metal to have an Rc hardness range of $31-32$ and $32-35$ respectively. Specimen PD-4828-T-1 exhibited a yield strength of only 130 KSI (897 MPa), while specimen PD-4828-T-5 was somewhat higher in strength at $137 \mathrm{KSI}(945 \mathrm{MPa})$. The highest weld metal hardness readings on PD-4824 (PD-4828) were in the order of $36-38 \mathrm{Rc}$. In contrast the hardness traverses on that macro from PD-4834 (PD-4833) showed the hardness of the weld metal alone to vary from a low of 36 Rc to a high of 45 Rc . Tensile specimen $\mathrm{T}-4$ from PD-4833 which exhibited a tensile strength of $165 \mathrm{KSI}(1139 \mathrm{MPa}$) and a yield strength of 153 KSI (1055 MPa) appears to have had a corresponding hardness of Rc $40-45$ as shown by Figure 38 and Table XXXII. Both tensile speicmens T-4 and T-2 from the near midthickness areas of PD-4833 were located in those areas where the weld layers were deposited at a high level of wire feed speed and current, i.e., $250-264 \mathrm{ipm}(635-670 \mathrm{~cm} / \mathrm{m})$ and $315-365$ amperes, in contrast to the outer or near-surface weld beads from which specimens

4.0 4.3 (Continued)

T-1 and T-5 were removed. Figure 38 illustrates the increase in weld bead cross section which resulted from the use of the higher welding parameters. It was of interest to note that although a higher heat input was used for the near mid-thickness weld layers, 1.e., 47-51 $\mathrm{KJ} /$ in $(18.5-20 \mathrm{KJ} / \mathrm{cm})$ than for the outside weld layers, $37-39 \mathrm{KJ} /$ in $(14.6-15.3 \mathrm{KJ} / \mathrm{cm})$, the strength and hardness of the mid-thickness weld layers were still somewhat higher. This is believed to have resulted for the following reasons: (l) although the energy input was higher, the weld beads still cooled relatively fast because of the low preneat/ interpass temperature utilized, $210-212^{\circ} \mathrm{F}\left(99-100^{\circ} \mathrm{C}\right)$. In addition, increasing wire feed speed and current with the GMA process is known to not only increase the overall bead cross-section but causes an increase in the pappila of the nugget. The pappila area being longer and narrower lends to solidify rapidly. (2) The HY-150 weld metal exhibits a very high strength when initially deposited at a cooling rate fast enough to form martensite. However, the strength and hardness of a multipass weld is appreciably weakened after exposure to a series of weld thermal cycles from subsequent weld passes. This is considered to be the primary reason a rather wide distribution existed between the tensile and yield strength obtained on the last two sets of gas metal arc weldments, and for the narrower differences in strength which existed between near mid-thickness and near surface tensiles of a single weld joint. Therefore, it appears that those weld passes deposited

4.04 .3 (Continued)

in PD-4833 at a higher wire feed speed and current were not as markedly influenced by subsequent heat cycles, as weld passes deposited near the surface at a lower level of wire feed speed and current judging from the results of the tensile and hardness tests.

As further evidence of the difference in strength which was found to exist between sets GMA-2 and GMA-3, was the fact that of six transverse tensile specimens removed from PD-4824 (the corresponding bar for PD-4828), all but one broke in the weld metal, only the mid-thickness specimen broke in the base material. On the other hand of the five transverse tensiles tested from PD-4834 (the corresponding bar for PD-4833) all but one (a top near surface specimen) broke in the base metal.

No attempt was made to investigate further the effects of the multiplicity of thermal cycles had on the microstructure of the weld metal through metallographic analyses, as this work was not considered to be within the scope of this program. In addition an in-depth study of this subject is presented in reference(12).
4.04 .3 (Continued)

The values of energy absorption for longitudinal Charpy-V-notch impact tests performed on PD-4824 (set GMA-2) compared with those recorded for PD-4834 (set GMA-3) were on the average higher than those tested from the latter at both test temperatures, i.e., $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$ and $0^{\circ} \mathrm{F}\left(-17^{\circ} \mathrm{C}\right)$. At $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$ near top and bottom surface specimens from PD-4834 exhibited toughness values comparable to those obtained on PD-4824. However at $0^{\circ} \mathrm{F}\left(-17^{\circ} \mathrm{C}\right)$ specimens removed from the $1 / 8$ and $7 / 8$ thickness from PD-4824 showed no loss in toughness while those from PD-4834 did suffer a loss in toughness. Longitudinal Charpy-V-notch tests on weldments SMA-1 and GMA-1 also exhibited a loss in toughness between $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$ and $0^{\circ} \mathrm{F}\left(-17^{\circ} \mathrm{C}\right)$ however both individual and average values of energy absorption were higher than on PD-4834. An analysis of this data as well as that of preliminary weldments PD-4836 and PD-4837 indicates that Charpy-V-notch impact properties can be expected to vary inversely as a function of the yield strength, within a given yield strength range, for welds deposited with either the SMA or GMA processes.

After an analysis of the data from Tasks I, II and III was completed the semi-automatic GMA welding process was recommended for use in all Task IV welding, and subsequently for the production welding of motor case Y rings and nozzles flanges with the following reasons as justification:

1. Experience gained by the Electric Boat division and other fabricators in developing welding processes and techniques for joining $H Y-150$ has demonstrated that the manual shielded metal arc welds are more sensitive to cracking and/or hydrogen embrittlement than GMA welds.
2. In addition to continuous maintenance of preheat during welding, which is required for both types of filler metal, the shielded metal arc 14018 electrode has been shown to require a post weld soaking period at preheat temperature.
3. To maintain the moisture content of the SMA electrode below 0.1%, it is recommended by the manufacturer that the electrode exposure time be 20 minutes maximum, while the bare wire electrode used with the GMA process can be left up to eight hours on the wire feeder with no deleterious effects.
4. The use of the GMA procedure for welding motor case case Y rings and nozzle flanges should provide savings of at least 25% over shielded metal arc welding. This saving accrues through the higher deposition rate and higher operator factor inherent with the semi-automatic gas metal arc process.

4.04 .3 (Continued)

The optimum welding procedure developed for welding HY-130 in the flat position with the semi-automatic spray arc GMA process is shown in Table XXXIII. The wire feed speed and welding current selected has been restricted to a maximum of 2001 pm (508 $\mathrm{cm} / \mathrm{min}$) and 310 amperes respectively, to facilitate good weld metal soundness, i.e., wire feed speed and welding current in excess of $245 \mathrm{ipm}(622 \mathrm{~cm} / \mathrm{in}$) and 360 amperes have been shown to increase the incidence of porosity in low alloy steel weld metal. For welding HY-150 steel with the GMA process, it is recommended that the wire feed speed be maintained at a level of 200 ipm ($507 \mathrm{~cm} / \mathrm{min}$) maximum, because higher wire feed speeds (2) (3) have been demonstrated to encourage hydrogen damage. Specifically, prolonged restraint promotes the diffusion of the available hydrogen to areas of stress concentration. Wire feed speeds of 210-250 ipm (533-635 cm/min) deepended the papilla and help hydrogen to be entrapped in it. In addition, it is possible that a deep papilla serves as a stress concentration point in itself.

The welding parameters and fabrication controls cortained in Table XXXIII were selected as being optimum, since they are expected to produce GMA welds exhibiting reproducible acceptable weld quality, and the best combination of weld metal strength and toughness in 6-inch (15.24 cm) material. Adherence to the range of plate temperature and maximum heat input specified should make possible a cooling rate fast enough to

```
4.0 4.3 (Continued)
```

provide a mean yield strength of 140 KSI (966 MPa) with a corresponding mean Charpy-V-notch energy absorption rate of $55 \mathrm{ft} .-$ lbs. (75 Joules) @ $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right.$) and $47 \mathrm{ft} .-1 \mathrm{bs} .(64$ Joules) @ $0^{\circ} \mathrm{F}\left(-17^{\circ} \mathrm{C}\right)$. The present specification for Type MIL-140S bare wire, issued by the Naval Ships System Command, i.e., MI-30BE requires a minimum average Charpy-V-notch impact value of 50 ft.-lbs. (68 Joules) @ $30^{\circ} \mathrm{F}\left(-1^{\circ} \mathrm{C}\right.$) for an all-weld metal yield strength range of 135 KSI (932 MPa) to 145 KSI (1000 MPa).

5.0 CONCLUSIONS

5.1 The welding techniques developed in this program for welding 6 -inch (15.24 cm) thick HY-150 steel in the flat position with the spray gas metal arc and shielded metal arc processes can be expected to consistently produce welds of good soundness and excellent mechanical properties.
5.2 Results of this program indicate that both the shielded metal arc and semi-automatic gas metal arc processes can be used to fabricate low cost HY-150 rocket motor nozzle attachment flanges and 'Y' rings using a rolled and welded procedure, as the weld metal deposited by each process exhibits excellent toughness at yield strength levels of 135 Ksi (930 MPa) - 145 Ksi (1000 MPa).
5.3 The shielded metal arc electrode used in this program can be expected to produce welds with superior toughness to that produced by gas metal arc welds as determined by the results of Charpy V-notch and edge notched full thickness slow bend tests.
5.4 Unstable crack propagation at stress levels below yield will not occur in structures fabricated of this material, as demonstrated by the slow bend fracture toughness tests. Some plastic deformation preceded crack extension in all specimens. The critical stress intensity factor $\mathrm{K}_{I C}$ could not be obtained even in this 6-inch (15.24 cm) thickness of material by the standard ASTM test method.

5.0 (Continued)

5.5 The goal of a minimum yield strength of 140,000 Psi (966 MPa) for the 6 -inch (15.24 cm) thick HY-150 plate produced for this program was not attained. It is probable that this was the result of insufficient quenching action, as the plates were immersed horizontally into a wide, shallow tank of flowing water which allowed large steam bubbles to form, with reduced heat transfer out of the plates.
5.6 In addition, the presence of a band of inclusions through the center of each plate indicates that melting and/or processing require refinement if a cleaner grade of metal is required for the intended application.
6.0 RECOMMENDATIONS

Material of the section sizes required by NASA might better be obtained by rolling directly to size, rather than by rolling plate which is subsequently cut to the sizes required. Bars, rather than plates, would tend to quench out more thoroughly or quickly, so that hardness is more uniform through the section thickness.

REFERENCES

1. J. W. Lee, "Investigation of 5 Ni-Cr-Mo-V, HY-150 Steel" General Dynamics Corporation, Electric Boat Division Report U413-67-001, January 1967.
2. C. R. Weaver, " 1969 Year End Report on the Welding of HY-130 Steel", General Dynamics Corporation, Electric Boat Division, Welding and Materials Engineering Report PDE-155, July 1970.
3. C. R. Weaver, " 1970 Year End Report on the Welding of HY-130 Steel", General Dynamics Corporation, Electric Boat Division, Welding and Materials Engineering Report PDE-160, March 1971.
4. W. T. Delong, "Eliminating Hydrogen Cracking" Metal Progress Article.
5. J. Vazquez and P. C. Paris, "A Plastic Zone Instability Phenomena Leading to Crack Propagation".
6. J. E. Srawley, and W. F. Brown, "Fracture Toughness Testing Methods", A.S.T.M. STP-381.
7. Gross B.; Roberts, E. Jr.; and Srawley, J. E.; "Elastic Displacement for Various H-Cracked Plate Specimens", NASA TN D-4232, 12 (November 1967).
8. P. M. Schmidt and R. S. Snow, "Development of Optimum TIG Welding Procedure for Production of Weldments in 12 Ni Maraging Steel".

REFERENCES (Continued)
9. M. G. Dawes, "Fracture Pre-Cracking Weldment Fracture Mechanics Specimens", Metal Construction and British Welding Journal, February, 1971.
10. Dorschu, K. E., "Control of Cooling Rates in Steel Weld Metal", Welding Journal, Research Suppl. 49 S to 62S (1968).
11. Connor, L. P., et al., "Development of Procedures for Welding HY-130(T) Steel", Welding Journal, Research Suppl. 309S to 321s.
12. Krantz, B. M., "Factors Affecting the Strength of Multipass Low-Alloy Steel Weld Metal", Welding Journal, Research Supp1. 235S to 241S.

N.D. - Not determined
N.R. - Not recorded

Plate F-4602

1. Initial Heat Treatment:
a. $1670^{\circ} \mathrm{F}(1)\left(910^{\circ} \mathrm{C}\right) / 2 \mathrm{Hrs}$. @ Temp.
b. Water Quench
c. $1499^{\circ} \mathrm{F}\left(815^{\circ} \mathrm{C}\right) / 2 \mathrm{Hrs}$. © Temp.
d. Water Quench
e. $995^{\circ} \mathrm{F}\left(535^{\circ} \mathrm{C}\right) / 2 \mathrm{Hrs}$. @ Temp.
f. Water Quench
2. lst and Final Re-Heat Treatment: a. $1499^{\circ} \mathrm{F}\left(815^{\circ} \mathrm{C}\right) / 2 \mathrm{Hrs}$.@ Temp.
b. Water Quench
c. $995^{\circ} \mathrm{F}\left(535^{\circ} \mathrm{C}\right) / 2 \mathrm{Hrs} . @$ Temp.
d. Water Quench
```
Plate F-4603
1. Initial Heat Treatment:
    a. 16570}\textrm{F}(1)(90\mp@subsup{2}{}{\circ}\textrm{C})/2-1/2 Hrs.@ Temp
    b. Water Quench
    c. 15040}\textrm{F}(81\mp@subsup{7}{}{\circ}\textrm{C})/2-1/2 Hrs. © Temp
    d. Water Quench
    e. 995* F (535*
    f. Water Quench
2. Ist Re-Heat Treatment:
    a. 1010
    b. Water Quench
3. 2nd Re-Heat Treatment:
    a. 1020}\mp@subsup{}{}{\circ}\textrm{F}(54\mp@subsup{8}{}{\circ}\textrm{C})/2 Hrs.@ Temp
    b. Water Quench
4. 3rd Re-Heat Treatment:
    a. 15080}\textrm{F}(82\mp@subsup{0}{}{\circ}\textrm{C})/2 Hrs. @ Temp
    b. Water Quench(2)
    c. 1004*F (540% C)/2 Hrs. @ Temp.
    d. Water Quench
5. 4th and Final Re-Heat Treatment:
    a. 1505*}\textrm{F}(82\mp@subsup{0}{}{\circ}\textrm{C})/2 Hrs.@ Temp
    b. Water Quench(3)
    c. 10040}\textrm{F}(54\mp@subsup{0}{}{\circ}\textrm{C})/2 Hrs.@ Temp
    d. Water Quench
```

Notes: (1) Plates brought up to temperature at $1 \mathrm{hr} . /$ inch $(2.54 \mathrm{~cm})$ in all cases.
(2) Plate lowered into circulating water.
(3) Plate lowered and moved as water circulated.

Items Tested and Source

a. GMA Bare Wire

Heat \#1P1338
Analy, By Welght

EB Analysis

Spool \#464	0.09	1.82	N.D. N.D. N.D.	N.D.	2.09	N.D.	N.D.	N.D.	N.D.	N.D.	N.D. N.D. N.D.

b. SMA Electrode

McKay $1 / 8^{\prime \prime}(0.32 \mathrm{~cm})$
Heat \#422w2201
Lot \#281995
Batch \#1672 $\quad \% \mathrm{C} \quad \% \mathrm{Mn} \quad \% \mathrm{P} \quad \% \mathrm{~S} \quad \% \mathrm{Si} \quad \% \mathrm{Cu} \quad \% \mathrm{Ni} \% \mathrm{Cr} \quad \% \mathrm{Mo} \quad \% \mathrm{~V} \quad \% \mathrm{Ti} \quad \% \mathrm{Al} \quad \% \mathrm{O}_{2} \% \mathrm{~N}_{2} \% \mathrm{H}_{2}$
$\begin{array}{llllllllllll}\begin{array}{l}\text { McKay Analysis } \\ \text { (As Deposited) }\end{array} & 0.085 & 0.88 & 0.004 & 0.004 & 0.37 & \text { N.D. } & 3.64 & 0.52 & 0.80 & \text { N.D. N.D. } & \text { N.D. N.D. N.D. N.D. }\end{array}$
(As Deposited)
c. SMA Electrode

McKay $3 / 16^{11}(0.47 \mathrm{~cm})$
Heat \#422W2201
Lot \#29179
Batch \#2409 \% \% \%Mn \%P \%S \%Si \%Cu \%Ni \%Cr \%Mo \%V \%Ti \%Al \%O2 \%N2 \%H2
McKay Analysis N.D. 0.96 N.D. N.D. 0.37 N.D. 3.53 O. 46 0.78 N.D. N.D. N.D. N.D. N.D. N.D.
(As Deposited)
d. $\frac{E B \text { Analysis }}{\text { from PD-4828 }}$

TABLE IV - Welding Procedure Record Sheet for Test Plate No. PD-4836 (SMA)

--- DEPOSITION SEQUENCE AND FOLLONING DATA FOR EACH WELD BEAD---

Pass	Arc	Arc	Travel	Wire		Arc	Cup					
No.	Amp.	Volts	$\frac{\begin{array}{c} \text { Iravel } \\ \text { ipm } \end{array}}{(\mathrm{cm} / \mathrm{pm})}$	$\begin{array}{r} \text { Wire } \\ \quad \text { ipm } \\ \hline \end{array}$	Peak	Bkgd.	$\begin{array}{r} \text { cup } \\ \text { Size } \\ \hline \end{array}$	$\begin{aligned} & \text { Total } \\ & \text { cfh } \\ & \hline \end{aligned}$	Cup/Work inches	Tip/Work inches	$\begin{aligned} & \text { Weld Start } \\ & \text { Temp, }{ }^{\circ}{ }^{\circ} \mathrm{F} \\ & \hline\left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	Comments (Repairsi etc.)
1-16	120/130	20/24	$\begin{aligned} & 4-1 / 2 \\ & 11.4 \\ & 0-1 / 2 \end{aligned}$	--	--	--	--	--	--	--	$\begin{array}{\|l\|} \hline 250 \\ 121 \mathrm{Min} \\ \hline \end{array}$	$\begin{gathered} 1 / 8^{\prime \prime}(0.32 \mathrm{~cm}) \\ \text { Electrode } \end{gathered}$
17-32	235/245	20/23	$\begin{aligned} & 9-1 / 2 \\ & 24.1 \end{aligned}$	-	-	--	--	--	--	--	"	$\begin{aligned} & 3 / 16^{\prime \prime}(0.47 \mathrm{~cm}) \\ & \text { Electrode } \end{aligned}$
33-53	120/130	20/24	$\begin{aligned} & 4-1 / 2 \\ & 11.4 \end{aligned}$	-	--	--	--	--	--	--	"	$1 / 8^{\prime \prime}(0.32 \mathrm{~cm})$ Electrode
$54-85$	235/245	20/23	$\begin{aligned} & 9-1 / 2 \\ & 24.1 \end{aligned}$	--	--	--	--	--	--	---	"	$\frac{\text { Electrode }}{} 3 / 16^{\prime \prime}(0.47 \mathrm{~cm})$
*Typi	1											

General Dynamics TABLE V (Cont'd) - Welding Procedure Record Sheet for Test Plate No. PD-4837 (GMA)
---DEPOSITION SEQUENCE AND FOLLOWING DATA FOR EACH WELD BEAD---
(Pg. 2 of 2)

72

Pass	Arc	Arc	$\text { Travel }{ }^{*}$		Puls	Arc						
No.	Amp.	Volts	$\frac{1 \mathrm{pm}}{(\mathrm{cm} / \mathrm{pm})}$	$\frac{1 \mathrm{pm}}{(\mathrm{~cm} / \mathrm{pm})}$	Peak	Bkgd.	Size	$\frac{\mathrm{cfh}}{(\mathrm{cmh})}$	$\begin{gathered} \text { inches } \\ \hline(\mathrm{cm}) \end{gathered}$	$\begin{gathered} \text { Tip/Work } \\ \text { inches } \\ \hline(\mathrm{cm}) \end{gathered}$	$\begin{aligned} & \text { Weld Start } \\ & \begin{array}{\|l} \text { Temp, }{ }^{\circ} \mathrm{F} \\ \left({ }^{\circ} \mathrm{C}\right) \end{array} \end{aligned}$	Comments (Repairs, etc.)
$1 \& 2$	120/130	$20 / 24$	$\begin{aligned} & 4-1 / 2 \\ & 11.4 \end{aligned}$	--	--	--	--	--	--	--	$\begin{aligned} & 250 \\ & 121 \mathrm{Min.} \end{aligned}$	$\begin{gathered} 1 / 8 \pi(0.32 \mathrm{~cm}) \\ \text { (SMA) } \end{gathered}$
3-125	290/310	24/25	$\frac{9}{24}$	$\begin{array}{\|l\|} \hline 188 \\ 477 \\ \hline \end{array}$	--	--	\#8\#10	$\begin{array}{r} 45 \\ 1.27 \end{array}$	$\begin{aligned} & 1 / 2^{\prime \prime} \\ & 1.27 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 / 8^{11} \\ & 1.59 \\ & \hline \end{aligned}$	保	$1 / 16^{\prime \prime}(0.16 \mathrm{~cm})$ Bare Wire
*Typi	cal											

General Dynamics Electric Boat Division TABLE VI - Welding Parameters for Weldments PD-4825, PD-4826 and PD-4827

General Dynamics TABLE VI (Cont'd) - Welding Parameters for Weldments PD-4825, PD-4826 and PD-4827
(Pg. 2 of ?

74

					Pulse	Arc.	Cup					
No.	Amp.	Volts	$\frac{10}{(\mathrm{~cm} / \mathrm{pm}}$)	1 pm	Peak	Bkgd.	Size	${ }_{\text {cfh }}^{\text {Total }}$	inches	Tip/work inches	$\begin{aligned} & \text { Weld Start } \\ & \begin{array}{c} \text { Temp, }{ }^{\circ} \mathrm{F} \end{array} \\ & \left.\hline{ }^{\circ} \mathrm{C}\right) \end{aligned}$	Cormments (Repairs__etc.)
1882	120/130	23/25	$\begin{aligned} & 4-1 / 2 \\ & 11.4 \end{aligned}$	-	--	--	--	--	--	--	250	$1 / 8^{17}(0.32 \mathrm{~cm})$ Electrode
3-59	230/240	20/23	$\begin{array}{r} 7 \\ 17.8 \\ \hline \end{array}$	--	--	--	--	--	--	--	"	$\begin{aligned} & 3 / 16 " 10.47 \mathrm{~cm}) \\ & \text { Electrode } \end{aligned}$
60-307	"	"	$\begin{array}{\|c\|} \hline 11 \\ 27.9 \\ \hline \end{array}$	--	--	--	--	--	--	--	"	" 1
*Typ1	cal											

General Dymamics
Electric Boat Division
TABLE VII - Welding Parameters for Weldments PD-4830, PD-4831 and PD-4931

TABLE VII (Cont'd) - Welding Parameters for Weldments PD-4830, PD-4831 and
(Pg. 2 of 2)
---DEPOSITION SEQUENCE AND FOLLOWING DATA FOR EACH WELD BEAD---

					Puls							
No.	Arc Amp.	Volts	$\begin{gathered} \text { iravel } \\ \text { ipm } \end{gathered}$	$\begin{array}{r} \text { Wire } \\ \quad \text { ipm } \\ \hline \end{array}$	Peak	Bkgd.	Size	cfh	inches	inches	$\text { Temp, }{ }^{\circ} \mathrm{F}$	Comments (Repairsi etfe)
			(cm/pm)					(cmh)	(cm)	(cm)	$\left({ }^{\circ} \mathrm{C}\right)$	
$1 \& 2$	120/130	20/24	$\begin{aligned} & 4-1 / 2 \\ & 11.4 \end{aligned}$	---	--	--	--	--	--	--	$\begin{aligned} & 250 \\ & 121 \mathrm{Min} . \end{aligned}$	$1 / 8^{\prime \prime}(0.32 \mathrm{~cm})$ Electrode
3-25	280/290	25/26	$\begin{aligned} & 9-1 / 2 \\ & 24.1 \end{aligned}$	$\begin{aligned} & 175 / 180 \\ & 444 / 457 \end{aligned}$	--	--	\#8/\#10	$\begin{array}{r} 45 \\ 1.27 \\ \hline \end{array}$	$\begin{aligned} & 5 / 8^{11} \\ & 1.59 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 / 4^{11} \\ & 1.90 \\ & \hline \end{aligned}$	"	$0.062^{\prime \prime}(0.16 \mathrm{~cm})$ Electrode
26-49	280290	24/25	$\begin{array}{r} 12 \\ 30.48 \\ \hline \end{array}$	11	--	--	\#8	"	$\begin{aligned} & 1 / 2^{11} \\ & 1.27 \end{aligned}$	$\begin{aligned} & 5 / 8^{11} \\ & 1.59 \end{aligned}$	"	" "
50276	280/290	25/26	$\begin{gathered} 12-1 / 2 \\ 31 \end{gathered}$	"	--	--	\#10	"	"	"	"	" 1
*Typi	qal											

General Dynamics
Electric Boat Division. TABLE VIII - Welding Parameters for weldments PD-4824, PD-4828 and PD-4829
$($ Set GMA-2) (Set GMA-2)

---TEPOSITION SEQUENCE AND FOLLOWING DATA FOR EACH WELD BEAD---

Pass No.	Arc Amp.	Arc Volts		$\begin{gathered} \text { Wire } \\ \text { ipm } \\ \hline \end{gathered}$	Pulsed-Arc		$\begin{array}{r} \text { Cup } \\ \text { Size } \\ \hline \end{array}$		Cup/Work $-\frac{\text { inches }}{(\mathrm{cm})}$	$\left\{\begin{array}{c} \text { Tip/Work } \\ \frac{\text { inches }}{(\mathrm{cm})} \end{array}\right.$	$\begin{aligned} & \text { Weld Start } \\ & \text { Temp, }{ }^{\circ} \mathrm{F} \end{aligned}$	$\begin{gathered} \text { Comments } \\ \text { (Repairs } \text { etc.) } \end{gathered}$
			ipm		Peak	Bkgd.						
1-2	145-155	--	9-1/2	176	--	--	--	--	--	-	$\begin{aligned} & 250-260 \\ & 121-127 \\ & \hline \end{aligned}$	$\begin{gathered} 1 / 8{ }^{11}(0.32 \mathrm{~cm}) \\ (\text { SMA }) \end{gathered}$
3-16	$270-280$	25	$\begin{aligned} & 9-1 / 2 \\ & 24.1 \end{aligned}$	$\begin{aligned} & 176 \\ & 447 \end{aligned}$	--	--	\#8\#10	$\begin{gathered} 45 \\ 1.27 \end{gathered}$	$\begin{aligned} & 1 / 2^{11} \\ & 1.27 \end{aligned}$	$\begin{aligned} & 5 / 8^{11} \\ & 1.59 \end{aligned}$	$\begin{aligned} & 121-127 \\ & 225-235 \\ & 107-111 \end{aligned}$	$1 / 16^{\prime \prime}(0.16 \mathrm{~cm})$
17-40	270-280	"	$\begin{gathered} 12 \\ 30.48 \\ \hline \end{gathered}$	"	--	--	\#8\#10	1.27	$\frac{1.27}{i n}$	$\begin{gathered} 1.59 \\ " 1 \end{gathered}$	$\begin{aligned} & 107-111 \\ & 245-255 \\ & 118-123 \end{aligned}$	Bare Wire $"$ $" 1$ $"$ $"$
41-54	270-280	"	$\begin{gathered} 15 \\ 38.2 \end{gathered}$	"	--	--	\#8	11	11	"	$\begin{aligned} & 110-123 \\ & 280-300 \\ & 138-168 \\ & \hline \end{aligned}$	$" 1$ $"$ $"$
55-303	$270-280$	"	"	"	--	--	\#10	"	$\begin{aligned} & 11 \\ & " 1 \end{aligned}$	$\begin{aligned} & \pi \\ & 11 \end{aligned}$	\square	" "
*Typical												
								.				

General Dynamics TABLE IX - Welding Parameters for Weldments PD-4833, PD-4834, and PD-4835 Electric Boat Division

General Dynamics \quad TABLE IX (Cont'd) - Welding Parameters for Weldments PD-4833, PD-4834 and PD-4835
-- DEPOSITION SEQUENCE AND FOLLONING DATA FOR EACH WELD BEAD--- (Pg. 2 of 2_)
©

TABLE X - Summary of HY-150 Base Metal Tensile Properties - U.S.S. Heat \#5P3947

U.S. Steel Test Results:	0.2% Offset Yield Strength PSI (MPa)	Tensile Strength PSI (MPa)		$\begin{aligned} & \text { \% Elong } \\ & \text { 1n } 2^{11} \\ & (5.1 \mathrm{~cm}) \\ & \hline \end{aligned}$	$\%$ Red. Of Area
Plate F-4602 (Transverse)					
End \#1 End \#2	138,620 144,540 $\binom{955}{997}$	154,	10(1063)	17.0 17.0	52.6 47.0
Plate F-4603 (Transverse)					
End \#1 End \#2	140,470 139,870 $\binom{970}{964}$	155,1	60(1070)	17.0 16.0	$\begin{aligned} & 52.9 \\ & 44.9 \end{aligned}$
E.B. Div. Test Results:					
Specimen Master Plate Oumber Orientation	0.2\% Offset Y.S., PSI(MPa)	$\begin{gathered} \text { Tensile } \\ \text { Strength, } \\ \text { PSI(MPa) } \end{gathered}$	$\begin{aligned} & \text { Reduction } \\ & \text { Area, } \end{aligned}$	of Elongati \%in2" (5.	
$\begin{array}{ll} \text { PD-12BM-B } & \begin{array}{l} \text { F-4602 } \\ \\ \\ \text { (Longitudinal) } \end{array} \end{array}$	$\begin{gathered} 133,500 \\ (925) \end{gathered}$	$\begin{aligned} & 150,000 \\ & (1035) \end{aligned}$	50.8	15.0	
$\begin{array}{ll} \text { PD-12BM-G } & \begin{array}{l} \text { F-4602 } \\ \text { (Transverse) } \end{array} \end{array}$	$\begin{gathered} 133,500 \\ (925) \end{gathered}$	$\begin{aligned} & 148,500 \\ & (1022) \end{aligned}$	44.0	13.0	
$\begin{array}{cc} \text { PD-12BM-A } & \text { F-4602 } \\ \text { (S.Transverse) } \end{array}$	$\begin{array}{cc} 137,500 \\ (947) \end{array} \quad 1$	$\begin{gathered} 144,000 \\ (994) \end{gathered}$	11.5	4.0	
$\begin{array}{ll} \text { PD-13BM-B } & \begin{array}{l} \text { F-4603 } \\ \\ \text { (Longitudinal) } \end{array} \end{array}$	$\begin{gathered} 140,000 \\ (966) \end{gathered}$	$\begin{aligned} & 154,500 \\ & (1064) \end{aligned}$	53.0	15.0	
$\begin{array}{ll} \text { PD-13BM-G } & \text { F-4603 } \\ & \text { (Transverse) } \end{array}$	$\begin{gathered} 139,000 \\ (960) \end{gathered}$	$\begin{aligned} & 154,000 \\ & (1061) \end{aligned}$	41.5	13.0	
$\begin{array}{cc} \text { PD-13BM-A } & \mathrm{F}-4603 \\ \text { (S.Transverse) } \end{array}$	$\begin{gathered} 142,500 \\ (984) \end{gathered}$	$\begin{aligned} & 152,000 \\ & (1049) \end{aligned}$	9.2	4.0	

Note: E.B. Div. results are from one $0.505^{\prime \prime}(1.28 \mathrm{~cm})$ round tensile specimen. Longitudinal and transverse specimens are from plate midthickness.

TABLE XI - Charpy V-Notch Impact Data as Reported By U.S. Steel for Master Plates $\mathrm{F}-4602$ and $\mathrm{F}-4603$

Plate Number	Specimen Orientation	Test Temperature		Absorbed Energy, $\stackrel{\mathrm{Ft}}{\text { (Joules) }}$ -
Plate F-4602	End \#1, Trans.	${ }^{\circ} \mathrm{F}$	$\frac{{ }^{\circ} \mathrm{C}}{-17}$	$\begin{gathered} 48,50,52-\operatorname{Avg} .50 \\ (65,68,71-\operatorname{Avg} .68) \end{gathered}$
	End \#l, Trans.	72	22	$\begin{gathered} 50,54,52-\operatorname{Avg} .52 \\ (68,73,71-\operatorname{Avg} .71) \end{gathered}$
	End \#2, Long.	0	-17	$\begin{gathered} 60,55,58-\operatorname{Avg} .58 \\ (82,75,79-\operatorname{Avg} .79) \end{gathered}$
	End \#2, Long.	72	22	$\begin{gathered} 62,60,62-\operatorname{Avg} .61 \\ (84,82,84-\operatorname{Avg} .83) \end{gathered}$
Plate P-4603	End \#l, Trans.	0	-17	$\begin{gathered} 53,53,57-\operatorname{Avg} .54 \\ (72,72,77 \text { Avg.73) } \end{gathered}$
	End \#1, Trans.	72	22	$\begin{gathered} 58,61,66-\operatorname{Avg} .62 \\ (79,83,90-\operatorname{Avg} .84) \end{gathered}$
	End \#2, Long.	0	-17	$\begin{gathered} 60,62,55-\operatorname{Avg} .59 \\ (82,84,75-\operatorname{Avg} .80) \end{gathered}$
	End \#2, Long.	72	22	$\begin{gathered} 71,70,73-\operatorname{Avg} .71 \\ (96,95,99 \text {-Avg. } 96 \text {) } \end{gathered}$
MIL-S-24371	Long. or Trans.	```0} room temp. 70}\textrm{F}\mathrm{ Min. (21*}\textrm{C}```		60 (82) Avg. of 3 Tests (1) (2)

Notes: (1) No single test shall be more than $5 \mathrm{ft} .-\mathrm{lbs}$. (6.8J) below the average.
(2) The average ft.-lbs. at room temperature $70^{\circ} \mathrm{F}\left(21^{\circ} \mathrm{C}\right) \mathrm{min}$. shall not exceed by more than $10 \mathrm{ft} .-1 \mathrm{bs}$. (13.6J) the avg. at $0^{\circ} \mathrm{F}\left(-17^{\circ} \mathrm{C}\right)$ 。

Plate Number	Specimen Orientation	$\begin{array}{r}\text { Te } \\ \text { Temper } \\ \hline\end{array}$	ature	CVN Impa	Strength
		${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	Ft.-Lbs.	Joules
F-4602	Longitudinal	+212	(100)	86,88	(117,120)
		175	79.5)	87,88	(118,120)
		125	(51.5	77,80	105,109
		76	(24.4	72,77	98,105
		30	-1.1)	75,78	(102,106.
		0	-17.8)	57,65	78,88
		-60	(-51)	39,39	53,53
		-100	(-73)	31,34	42,46
		-150	(-101)	17,23	23,31
		-170	(-112)	20,30	27,41
		-300	(-184)	7,6	(9,8.)
F-4602	Transverse	+212	(100)	66,67	(90,91)
		175	(79.5)	61,64	83,87
		125	51.5)	59,62	80,84
		76	24.4	59,66	80,90
		30	(-1.1)	56,69	76,94
		-60	(-17.8)	39,47	53,64
		-60 -100	(-51)	32,36	44, 49
		-150	(-101)	17,20	23,44
		-170	-112	10,23	(13,31
		-300	(-184)	6,6	8,8
F-4603	Transverse	+212	(100)	68,70	(92,95)
		175	(79.5)	60,64	82,87
		125	51.5)	64,66	87,90
		76	24.4	64,67	87,91
		30	(-1.1)	56,59	(76,80
		-60	-17.8)	48,56	65,76
		-100	$\left(\begin{array}{l}\text {-51 } \\ -73\end{array}\right.$	25,31	(34,72
		-150	-101)	19,29	26,39
		-170	(-112)	23,28	(31,38)
		-300	(184)	6,6	(8,8)

TABLE XIII -- HY-150 BASE METAL FRACTURE TOUGHNESS TEST DATA

Specimen Type: Notched Bend

Loading Method: Four Point Bending - constant moment at notched area. Major Span - 96" (244cm) Minor Span - 24" (62.2cm)

SPECIMEN IDENTIFICATION

PD-2BMK (Plate $F-4602$) $P D-3 B M K$ (Plate F-4603)

Thickness (B)
Depth (W)
$6.0^{\prime \prime}(15.24 \mathrm{~cm})$
$24.5^{\prime \prime}(62.2 \mathrm{~cm})$
$6.15^{\prime \prime}(15.62 \mathrm{~cm})$
$25.01^{\prime \prime}(63.5 \mathrm{~cm})$

Fatigue Precracking Parameters:
K_{f} (Max.) for Crack Completion
ΔK_{f} Final at Crack Completion

Cycles at ΔK_{f} (Final)
for Crack Completion
43.6 Ksi $\sqrt{\text { in. }}$ $(48 \mathrm{MPa} \cdot \mathrm{m} 1 / 2)$
39.5 Ksi $\sqrt{\text { in. }}$ (43.5 MPa.m $1 / 2$) 153,700
$44.3 \mathrm{Ksi} \sqrt{\text { in. }}$ ($48.8 \mathrm{MPa} \cdot \mathrm{m} 1 / 2$)
$37.7 \mathrm{Ksi} \sqrt{\text { in. }}$
(41.5 MPa $\cdot \mathrm{m} 1 / 2$)

152,700

Crack Length:

Surface (1)
1/4 Point
Center
3/4 Point
Surface (2)
Test Temperature
Relative Humidity
Loading Rate, KI/Time
$14.05^{\prime \prime}(35.7 \mathrm{~cm})$
$13.73^{\prime \prime}(34.9 \mathrm{~cm})$
$14.05^{\prime \prime}(35.7 \mathrm{~cm})$
$13.26^{\prime \prime}(33.7 \mathrm{~cm})$
$11.40^{\prime \prime}(29 \mathrm{~cm})$
$65^{\circ} \mathrm{F}\left(18.3^{\circ} \mathrm{C}\right)$
Not Recorded
$20 \mathrm{Ksi} \sqrt{1 \mathrm{n}} . / \mathrm{min}$. (22 $\mathrm{MPa} \cdot \mathrm{m} 1 / 2$)
$12.72^{\prime \prime}(32.3 \mathrm{~cm})$
$13.42^{\prime \prime}(34.1 \mathrm{~cm})$
$13.58^{\prime \prime}(34.5 \mathrm{~cm})$
$13.42^{\prime \prime}(34.1 \mathrm{~cm})$
$12.41^{\prime \prime}(31.5 \mathrm{~cm})$
$65^{\circ} \mathrm{F}\left(18.3^{\circ} \mathrm{C}\right)$
Not Recorded
$20 \mathrm{Ksi} \sqrt{1 \mathrm{n} .} / \mathrm{min}$.
(22 MPa •m l/2)

TABLE XIII -- HY-150 BASE METAL FRACTURE TOUGHNESS TEST DATA (Continued)

PD-2BMK (Plate F-4602) PD-3BMK (Plate F-4603)
Crack Length (Continued):

Fracture Appearance	40% Shear	40% Shear
Yield Strength	$133,500 \mathrm{Psi}(922 \mathrm{MPa})$	$140,000 \mathrm{Psi}(966 \mathrm{MPa})$
Stress Intensity	$214.5 \mathrm{Ksi} \sqrt{1 \mathrm{n} .}$	$270 \mathrm{Ksi} \sqrt{\mathrm{In}}$
Factor K_{Q}	$(236 \mathrm{MPa} \cdot \mathrm{m} 1 / 2)$	$(297 . \mathrm{MPa} \cdot \mathrm{m} 1 / 2)$

TABLE XIV - All-Weld-Metal Tensile and Charpy Impact Test Data - SMA Welds in Restrained 2-Inch (5.1 cm) HY-80 Base Plate

Tensile Properties					
Specimen Number	$\begin{aligned} & \text { Location } \\ & \text { (Fig.10) } \end{aligned}$	0.2% offset Y.S., Ps1 (MPa) \qquad	\qquad	\% Reduction of Area	$\begin{aligned} & \text { \% Elongation } \\ & \text { in } 2^{\prime \prime}(5.1 \mathrm{~cm}) \end{aligned}$
PD-4836-T1	T	$\begin{aligned} & 148,000 \\ & (1020) \end{aligned}$	$\begin{aligned} & 152,000 \\ & (1048) \end{aligned}$	61.0	17.0
PD-4836-T3	T	$\begin{aligned} & 150,500 \\ & (1038) \end{aligned}$	$\begin{aligned} & 155.300 \\ & (1072) \end{aligned}$	58.0	14.0
PD-4836-T2	B	$\begin{gathered} 142,500 \\ (983) \end{gathered}$	$\begin{aligned} & 150,000 \\ & (1035) \end{aligned}$	63.0	17.0
PD-4836-T4	B	$\begin{gathered} 143,300 \\ (990) \end{gathered}$	$\begin{aligned} & 148,500 \\ & (1025) \end{aligned}$	61.5	15.0

Charpy V-Notch Impact Properties

Specimen Number	$\begin{aligned} & \text { Location } \\ & \text { (Fig.10) } \end{aligned}$
PD-4836-Cl	T
-c2	T
-c3	T
-c4	T
-C5	T
-c6	T
-C7	B
-C8	B
-C9	B
-C10	B
-Cl1	B
-C12	B

CVN Impact Values, Ft.-Lbs. (Joules)		
$\begin{aligned} & 71 \\ & 76 \end{aligned}\binom{96}{103}$		
	$\begin{aligned} & 83 \\ & 83 \end{aligned}\binom{113}{113}$	
		$\begin{aligned} & 89 \\ & 93 \end{aligned}\binom{121)}{126}$
$\begin{aligned} & 86 \\ & 83 \end{aligned}\binom{117}{113}$		
	$\begin{aligned} & 92 \\ & 97 \end{aligned}\binom{125}{132}$	
		89 95 $\binom{121}{129}$

$\frac{\text { TABLE XV }- \text { All Weld Metal Tensile Data-GMA Welds on Restrained 4-Inch (} 10.2 \mathrm{~cm} \text {) HY-80 }}{\text { Base Plate }}$

	Specimen Number	$\begin{aligned} & \text { Location } \\ & \text { (Fig.11) } \end{aligned}$	$\begin{gathered} 0.2 \% \text { Offset } \\ \text { Y.S., Psi Psi } \\ \left(\begin{array}{l} \text { Mpa) } \end{array}\right. \end{gathered}$	Tensile Strength, Psi (MPa)	\% Reduction of Area	$\begin{aligned} & \text { \% Elongation } \\ & \text { in } 2^{\prime \prime}(5.1 \mathrm{~cm}) \end{aligned}$
	PD-4837-T1	A	$\begin{gathered} 140,000 \\ (966) \end{gathered}$	$\begin{gathered} 144,500 \\ (995) \end{gathered}$	60.3	17.0
	PD-4837-T5	A	$\begin{gathered} 135,000 \\ (935) \end{gathered}$	$\begin{gathered} 144,500 \\ (995) \end{gathered}$	61.6	18.0
	PD-4837-T2	B	$\begin{aligned} & 145,000 \\ & (1000) \end{aligned}$	$\begin{aligned} & 151,000 \\ & (1040) \end{aligned}$	59.1	17.0
	PD-4837-T6	B	$\begin{aligned} & 146,000 \\ & (1008) \end{aligned}$	$\begin{aligned} & 151,250 \\ & (1042) \end{aligned}$	46.9	13.0
$\underset{\sim}{\infty}$	PD-4837-T3	C	$\begin{gathered} 137,500 \\ (948) \end{gathered}$	$\begin{gathered} 142,000 \\ (980) \end{gathered}$	63.0	18.0
	PD-4837-T7	C	142,000 (980)	$\begin{aligned} & 145,750 \\ & (1004) \end{aligned}$	60.1	17.0
	PD-4837-T4	D	$\begin{gathered} 139,000 \\ (960) \end{gathered}$	$\begin{gathered} 144,000 \\ (995) \end{gathered}$	62.8	18.0
	PD-4837-T8	D	$\begin{gathered} 137.000 \\ (946) \end{gathered}$	$\begin{gathered} 143,500 \\ (990) \end{gathered}$	59.0	18.0

TABLE XVI - Charpy V-Notch Impact Data - GMA Welds in Restrained 4" (10.2cm) HY-80 Base Plate

	Specimen Number	$\begin{aligned} & \text { Location } \\ & \text { (Fig. II) } \end{aligned}$	$\begin{aligned} & \text { CVN Impac } \\ & 0^{\circ} \mathrm{F}\left(-17^{\circ} \mathrm{C}\right) \end{aligned}$	$\frac{\mathrm{ees}, \mathrm{Ft} .-\mathrm{Lb}}{32^{\circ} \mathrm{F}\left(\mathrm{O}^{\circ} \mathrm{C}\right)}$	$\frac{\mathrm{es})}{72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)}$
	PD-4837-A1	A	--	--	
	-A2	A			72 (98)
	-A3	A		58 61 $\binom{79}{83}$	
	-A5	A			
	-A6	A	55 (75)		
	-B1	B			64 (87)
	-B2	B			60 (82)
	-83	B		53 53 $\binom{72}{72}$	
∞	-B5	B	56 (76)		
	-B6	B	55 (7.5)		
	-C1	C			67 (91)
	-C2	C			63 (86)
	-c3	${ }_{C}^{C}$		61 58 $\binom{83}{79}$	
	-C5	c	56 (76)		
	-c6	C	48 (65)		
	-D1	D			68 (93)
	-D2	D			68 (93)
	-D3	D		$55(75)$	
	-D5	D	53 (72)	55 (75)	
	-D6	D	52 (71)		

TABLE XVII -- SMA WELDMENT TENSILE PROPERTIES (SET SMA-1)
Transverse Tensile Properties: 0.505 -inch (1.28 cm) specimens with reduced section including portions of weld metal, HAZ and base metal

*This specimen was from same layer as -TT2, only in opposite sidewall area.
Longitudinal All-Weld Tensile Properties: 0.505 -inch (1.28 cm) specimens taken at various depths on weld centerline

Transverse (HAZ) Charpy Test Results: (CVN specimens oriented transverse to weld centerline, with notched surface parallel to top and bottom surfaces of weldment)

Specimen Number	Specimen Location
PD-4825-C1	

$\begin{gathered} \text { Temp } \\ { }_{\circ} \mathrm{F} \end{gathered}$	$\begin{array}{r} \text { cature } \\ \left({ }^{\circ} \mathrm{C}\right) \end{array}$	CVN Impact, Ft.-Lbs.(Joules)		
72	(22)	72	(98)	
72	(22)	77	(105)	
72	(22)	78	(106)	$\begin{aligned} & \operatorname{Avg} \cdot @ 72^{\circ} F\left(-22^{\circ} \mathrm{C}\right)= \\ & 75(102) \end{aligned}$
72	(22)	82	(111)	
72	(22)	68	(92)	
0	(-17)	59	(80)	
0	(-17)	67	(91)	

Longitudinal All-Weld Charpy Test Results:
(CVN specimens oriented longitudinal to weld with notch perpendicular to top and bottom surfaces of weldment, on weld centerline)

Specimen Number	Specimen Location
PD-4827-C1	Near Top Surface
-63	1/4 Thickness
-C7	Mid-Thickness
-c4	3/4 Thickness
-c6	Near Bottom Surface
-c2	1/8 Thickness
-C5	7/8 Thickness

$\begin{aligned} & \text { Temp } \\ & { }^{\circ} \mathrm{F} \\ & \hline \end{aligned}$	rature $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { CVN Impact, } \\ \text { Ft.-Lbs. (Joules) } \end{gathered}$		
72	(22)	107	(146)	
72	(22)	72	(98)	
72	(22)	95	(129)	
72	(22)	97	(132)	$\begin{aligned} & \text { Avg.@720} \mathrm{F}\left(-22^{\circ} \mathrm{C}\right)= \\ & 98(133) \\ & \text { Avg.@Oㅇ. }\left(-17^{\circ} \mathrm{C}\right)= \\ & 91(124) \end{aligned}$
72	(22)	99	(134)	
0	(-17)	92	(125)	
0	(-17)	90	(122)	

TABLE XIX -- GMA WELDMENT PD-4825, HEAT INPUT DATA FOR ALL-WELD TENSILE SPECIMENS

	Specimen -Tl			Speci en -T2		Specimen -T3		Specimen -T4		Specimen -T5	
	Weld Beads Tested	Heat Inpu Kj/i		Weld Beads Tested	Heat Input $\mathrm{Kj} / \mathrm{in}(\mathrm{cm})$	Weld Beads Tested	Heat Input $\mathrm{Kj} / \mathrm{in}(\mathrm{cm})$	Weld Beads Tested	Heat Input, $\mathrm{Kj} / \mathrm{in}(\mathrm{cm})$	Weld Beads Tested	Heat Input $\mathrm{Kj} / \mathrm{in}(\mathrm{~cm})$
	\# 89		0.6)	\#18	25(9.8)	\#46*	40(15.7)	\#61*	26(10.2)	\#141*	27(10.6)
	96	27	"	19	25(9.8)	47*	40(15.7)	62*	26(10.2)	142*	27
	99	27	"	22	24(9.4)	48*	41(16.1)	67*	28(11)	150*	27
	107	27	"	23	24 (9.4)	49*	41(16.1)	69*	28(11)	151*	27
	108	27	"	24	24(9.4)	50*	45(17.7)	71*	28(11)	152*	27
$\underline{\square}$	109	27	"	28	23(9.0)	51*	45(17.7)	72*	29(11.4)	159*	27
	117	27	"	29	23(9.0)	52*	44(17.3)	$76 *$	29(11.4)	161*	27
	118	27								171*	27
	Avg.	27	10.6)	Avg.	24(9.4)	Avg.	$42(16.5)$	Avg.	28(10.2)	Avg.	27(10.6)

TABLE XX -- RESULTS OF R_{C} HARDNESS TRAVERSE, WELDMENT PD-4827
(See Figure 30)
Loc. Rc
No. No. Zone

TABLE XX (Continued)

TABLE XX (Continued)

TABLE XX (Continued.)

$\begin{array}{ll}\text { Loc. } & R c \\ \text { No. } & \text { No. Zone }\end{array}$

TABLE XX (Continued)
$\begin{array}{ll}\text { Loc. } & \mathrm{Rc} \\ \text { No. } & \text { No. Zone }\end{array}$

415. 30
416. 28
417. 31
418. 33
4.19. 30
420. 29
421. 30
422. 30
423. 30
424. 30
425. 31
440. 39 BM 465. 34
441. $37 \mid$ 466. 34
442. 37 467. 35
443. 37
444. 36 445.
446. 36 447. 37 448. 36 449. 37 450. 36
468. 36
469. 34
470. 35
471. 35
472. 34
473. 34
474. 34
475. 36

TABLE XXI -- GMA WELDMENT TENSILE PROPERTIES (SET GMA-1)

Transverse Tensile Properties: 0.505 -inch (1.28 cm) specimens with reduced section including portions of weld metal, HAZ and base metal

*This specimen was from high heat input area of same layer as -TT2, in opposite sidewall area.

Longitudinal All-Weld Tensile Properties: 0.505 -inch (1.28 cm) specimens taken at various depths on weld centerline

Specimen Number	Specimen Location	UT.S, (MPa)	$\begin{gathered} \text { Q2\% Y.S., } \\ \mathrm{Ksi} \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Elong, } \\ & \text { \%in2" } \\ & (5.1 \mathrm{~cm}) \end{aligned}$	$\begin{gathered} \text { R.A. } \\ \underset{\text { of }}{ } \\ \hline \end{gathered}$	Preheat ${ }^{\circ} \mathrm{F}$ $\left({ }^{\circ} \mathrm{C}\right)$	Avg. Heat Input, $\mathrm{Kj} / \mathrm{in}$. \qquad
PD-4830-T1	Top, Near Surface	$\begin{aligned} & 143 \\ & (986) \end{aligned}$	$\begin{gathered} 137 \\ (946) \end{gathered}$	18.0	61	$\begin{gathered} 300 \\ (154) \end{gathered}$	29
-T2	Near Mid-Thickness, Top 1/2	$\begin{aligned} & 154 \\ & (1062) \end{aligned}$	$\begin{aligned} & 147 \\ & (1015) \end{aligned}$	16.0	59	250	$\frac{1}{3}{ }^{4}$
-T3	Mid Thickness	159	150	16.0	58	225	38
		(1100)	(1030)			(107)	(14.9)
-T4	Near Mid-Thickness, Bottom $1 / 2$	$\begin{aligned} & 154 \\ & (1062) \end{aligned}$	$\begin{aligned} & 147 \\ & (1015) \end{aligned}$	16.0	64	$\begin{array}{r} 250 \\ (121) \end{array}$	$\begin{array}{r} 3.91 \\ (13.4) \end{array}$
-T5	Bottom, Near Surface		141	18.0	62	300	27

TABLE XXII -- GMA WELDMENT CHARPY IMPACT PROPERTIES (SET GMA-2)
Transverse (HAZ) Charpy Test Results: (CVN specimen oriented transverse to weld centerline, with notched surface parallel to top and bottom surfaces of weldment)

$\begin{array}{c}\text { Specimen } \\ \text { Number }\end{array}$	$\begin{array}{c}\text { Specimen } \\ \text { Location }\end{array}$			
PD-4830-C1		$\left.\quad \begin{array}{ll}\text { Near Top Surface }\end{array}\right]$	-C 3	$1 / 4$ Thickness
:---	:---			
-C 7	M1d-Thickness			
-C 4	$3 / 4$ Thickness			
-C 6	Near Bottom Surface			
-C 2	$1 / 8$ Thickness			
-C 5	$7 / 8$ Thickness			

	$\begin{aligned} & \text { ture } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & \text { CVN Impact, } \\ & \text { Ft.-Lbs. (Jouies) } \end{aligned}$		
72	(22)	76	(103)	
72	(22)	75	(102)	
72	(22)	90	(122)	
72	(22)	83	(113)	$\begin{aligned} & \text { Avg } . @ 72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)= \\ & 80(109) \end{aligned}$
72	(22)	77	(105)	Avg.@0'F ${ }^{\circ}\left(-17^{\circ} \mathrm{C}\right)=$
0	(-17)	63	(85)	
0	(-17)	79	(107)	

Longitudinal All-Weld Charpy Test Results: (CVN specimens oriented longitudinal to weld with notch perpendicular to top and bottom surfaces of weldment, on weld centerline)

$\begin{array}{c}\text { Specimen } \\ \text { Number }\end{array}$	$\begin{array}{c}\text { Specimen } \\ \text { Location }\end{array}$			
PD-4831-C1		$\left.\quad \begin{array}{ll}\text { Near Top Surface }\end{array}\right]$	$1 / 4$ Thickness	
:---	:---			
$-C 3$	Mid-Thickness			
$-C 4$	$3 / 4$ Thickness			
$-C 6$	Near Bottom Surface			
$-C 2$	$1 / 8$ Thickness			
$-C 5$	$7 / 8$ Thickness			

	ture (${ }^{\circ} \mathrm{C}$)	CVN Impact, Ft.-Lbs. (Joules)	
72	(22)	61	(83)
72	(22)	58	(79)
72	(22)	52	(71)
72	(22)	56	(76)
72	(22)	64	(87)
0	(-17)	62	(84)
0	(-17)	56	(76)

Avg.@720 ${ }^{\circ}\left(22^{\circ} \mathrm{C}\right)=$ Avg.@0 ${ }^{\circ} \mathrm{F}\left(-17^{\circ} \mathrm{C}\right)=$ 54 (73)

TABLE XXIII -- GMA WELDNENT PD-4830, HEAT INPUT DATA FOR ALL-WELD TENSILE SPECIMENS

	Specimen -Tl		Specimen -T2		Specimen -T3		Specimen - T^{4}		Specimen -T5	
	Weld Beads Tested	Heat Input, $\mathrm{Kj} / \mathrm{in}(\mathrm{cm})$	Weld Beads Tested	Heat Input $\mathrm{Kj} / \mathrm{In}$ (cm)	Weld Beads Tested	Heat Input $\mathrm{Kj} / \mathrm{in}(\mathrm{cm})$	Weld Beads Tested	Heat Input $\mathrm{KJ} / \mathrm{in}(\mathrm{cm})$	Weld Beads Tested	Heat Input $\mathrm{KJ} / \mathrm{In}(\mathrm{cm})$
	\# 92	25(9.8)	\#12	40(15.7)	\#24	40(15.7)	\#36	34(13.4)	\#144	27(10.6)
	93	28(11)	15	43(16.9)	25	43(16.9)	39	34 "	145	28(11)
	215	30(11.8)	18	37(14.6)	26	37(14.6)	40	34 "	152	26(10.2)
	216	30 "	19	43(16.9)	27	36(14.2)	43	34 "	153	27(10.6)
	217	30 "	56	$31(12.2)$	28	39(15.3)	47	34 "	154	28(11)
	225	30 "	57	30(11.8)	30	36(14.2)	48	34 "	161	26(10.2)
8	226	30 "	62	27(10.6)					162	25(9.8)
	227								163	26(10.2)
	238								171	27(10.6)
	239	30 "		-					172	27(10.6)
	Avg.	29(11.4)	Avg.	36(14.2)	Avg.	38(14.9)	Avg.	34(13.4)	Avg.	27(10.6)

TABLE XXIV -- RESULTS OF R_{C} HARDNESS TRAVERSE, WELDMENTS PD-4831 $\begin{aligned} \text { Loc. } & \mathrm{Rc} \text { (S } \\ \text { No. } & \text { No. Zone }\end{aligned}$

TABLE XXIV (Continued)

TABIE XXIV (Continued)
$\begin{array}{ll}\text { Loc. } & \mathrm{Rc} \\ \text { No. } & \\ \text { No. Zone }\end{array}$

TABLE XXIV (Continued)

TABLE XXIV (Continued)

TABLE XXV -- GMA WELDMENT TENSILE PROPERTIES (SET GMA-2)
Transverse Tensile Properties: 0.505 -inch (1.28 cm) specimens with reduced section including portions of weld metal, HAZ and base metal

TABLE XXV -- GMA WELDMENT TENSILE PROPERTIES (SET GMA-2) (Continued)

Specimen Number	Specimen Location	$\begin{gathered} \text { UTS, } \\ \mathrm{Ksi} \\ \text { (MPa) } \end{gathered}$	$\begin{gathered} 0.2 \% \mathrm{YS}, \\ \mathrm{Ksi} \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Elong, } \\ & \text { \%in2" } \\ & (5.08 \mathrm{~cm}) \end{aligned}$	$\begin{aligned} & \mathrm{R} \cdot \mathrm{~A} \\ & \underset{\mathscr{H}}{ } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Preheat } \\ { }^{\circ} \mathrm{F} \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	Avg. Heat Input, $\mathrm{Kj} / \mathrm{In}$. ($\mathrm{Kj} / \mathrm{cm}$)
PD-4828-T2	Near Mid-Thickness, Top $1 / 2$ $*$ Between $-T 2$ and $-T 3$, on weld Q	$\begin{aligned} & 149 \\ & (1030) \\ & 144 \\ & (994) \end{aligned}$	$\begin{gathered} 141 \\ (973) \\ 139 \\ (960) \end{gathered}$	18.0 14.0	63 63	$\begin{gathered} 280 \\ (137) \\ 280 \\ (137) \end{gathered}$	$\begin{gathered} 29 \\ (11.4) \\ 39 \\ (15.3) \end{gathered}$
-T3	Mid-Thickness	$\begin{aligned} & 156 \\ & (1077) \end{aligned}$	$\begin{aligned} & 148 \\ & (1020) \end{aligned}$	17.0	62	$\begin{gathered} 280 \\ (137) \end{gathered}$	$\begin{gathered} 33 \\ (13.0) \end{gathered}$
-T4	Near Mid-Thickness, Bottom 1/2	$\begin{aligned} & 147 \\ & (1015) \end{aligned}$	$\begin{gathered} 137 \\ (945) \end{gathered}$	17.0	61	$\begin{gathered} 280 \\ (137) \end{gathered}$	$\begin{gathered} { }^{27} \\ (10.6) \end{gathered}$
-T5	Bottom, Near Sufface	$\begin{aligned} & 145 \\ & (1000) \end{aligned}$	$\begin{gathered} 137 \\ (945) \end{gathered}$	17.0	60	$\begin{gathered} 280 \\ (137) \end{gathered}$	$\begin{gathered} 26 \\ (10.2) \end{gathered}$

TABLE XXVI -- GMA WELDMENT CHARPY IMPACT PROPERTIES (SET GMA-2)

Transverse (HAZ) Charpy Test Results: (CVN specimens oriented transverse to weld centerline, with notched surface parallel to top and bottom sur-

Specimen Number	Specimen Location
PD-4828-C1	Near Top Surface
-c3	1/4 Thickness
-C7	Mid-Thickness
-c4	3/4 Thickness
-c6	Near Bottom Surface
-c2	1/8 Thickness
-C5	7/8 Thickness

	$\begin{aligned} & \text { ture } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	CVN Impact, Ft.-Lbs. (Joules)		
72	(22)	78	(106)	
72	(22)	81	(110)	
72	(22)	84	(114)	
72	(22)	97	(132)	
72	(22)	80	(109)	$\begin{aligned} & \operatorname{Avg} . @ 0^{\circ} \mathrm{F}\left(-17^{\circ} \mathrm{C}\right)= \\ & 75(102) \end{aligned}$
0	(-17)	75	(102)	
0	(-17)	75	(102)	

$\stackrel{\rightharpoonup}{-}$ Longitudinal All-Weld Charpy Test Results:
(CVN specimens oriented longitudinal to weld with notch perpendicular to top and bottom surfaces of weldment, on weld centerline)

Specimen Number	Specimen Location
PD-4824-Cl	Near Top Surface
-c3	1/4 Thickness
-c7	Mid-Thickness
-c4	3/4 Thickness
-c6	Near Bottom Surface
-C2	1/8 Thickness
-C5	7/8 Thickness

	ture $(\circ \mathrm{C})$	CVN Impact, Ft.-Lbs. (Joules)	
72	(22)	59	(80)
72	(22)	55	(75)
72	(22)	63	(86)
72	(22)	63	(86)
72	(22)	67	(91)
0	(-17)	63	(86)
0	(-17)	64	(87)

Avg.@72॰$\left(22^{\circ} \mathrm{C}\right)=$
61 (83)
$\operatorname{Avg} . @ 0^{\circ}(86)^{\left.-17^{\circ} \mathrm{C}\right)}=$
(87)

TABLE XXVII -- GMA WELDMENT PD-4828, HEAT INPUT DATA FOR ALL-WELD TENSILE SPECIMENS

TABLE XXVIII - RESULTS OF RC HARDNESS TRAVERSE, WELDMENT PD-4824)
(See Figure 38)
Loc. Re
No. No. Zone

Loc. Re
No. No.

TABLE XXVIII (Continued)

TABIE XXVIII (Continued)

TABLE XXIX -- GMA WELDMENT TENSILE PROPERTIES (SET GMA-3)
Transverse Tensile Properties: 0.505 -inch (1.28 cm) specimens with reduced section including portions of weld metal, HAZ and base metal

*Small defect in fracture surface

TABLE XXX -- GMA WELDMENT CHARPY IMPACT PROPERTIES (SET GMA-3)
Transverse (HAZ) Charpy Test Results: (CVN specimens oriented transverse to weld centerline, with notched surface parallel to top and bottom surfaces of weldment)

Specimen Number	Specimen Location
PD-4833-C1	Near Top Surface
-C 3	$1 / 4$ Thickness
-C 7	Mid-Thickness
-C 4	$3 / 4$ Thickness
-C 6	Near Bottom Surface
-C 2	$1 / 8$ Thickness
-C 5	$7 / 8$ Thickness

Longitudinal All-Weld Charpy Test Results:

Temperature${ }^{\circ} \mathrm{F} \quad\left({ }^{\circ} \mathrm{C}\right)$		CVN Impact,	
		Ft. -	Joules)
72	(22)	75	(102)

Test Invalid

72	(22)	61	(83)
72	(22)	80	(109)
0	(-17)	74	(101)
0	(-17)	55	(75)
0	(-17)	83	(113)

```
Avg.@72`}\textrm{F}(2\mp@subsup{2}{}{\circ}\textrm{C})
76 (103)
Avg.@0`F
```

(75)
(113)
(CVN specimens oriented longitudinal to weld with notched perpendicular to top and bottom surfaces of weldment, on weld centerline)

$\begin{array}{c}\text { Specimen } \\ \text { Number }\end{array}$	$\begin{array}{c}\text { Specimen } \\ \text { Location }\end{array}$			
PD-4834-C1		$\left.\quad \begin{array}{ll}\text { Near Top Surface }\end{array}\right]$	-C 3	$1 / 4$ Thickness
:---	:---			
-C 7	Mid-Thickness			
-C 4	$3 / 4$ Thickness			
-C 6	Near Bottom Surface			
-C 2	$1 / 8$ Thickness			
-C 5	$7 / 8$ Thickness			

	$\begin{aligned} & \text { ature } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	CVN Impact,\qquad	
72	(22)	59	(80)
72	(22)	54	(73)
72	(22)	53	(72)
72	(22)	46	(63)
72	(22)	60	(82)
0	(-17)	50	(68)
0	(-17)	45	(61)

$$
\begin{aligned}
& \text { Avg }_{0} @ 72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)= \\
& 54(73) \\
& \mathrm{Avg}^{@\left(@ 0^{\circ} \mathrm{F}\left(-17^{\circ} \mathrm{C}\right)=\right.} \\
& 47(64)
\end{aligned}
$$

TABLE XXXI -- GMA WELDMENT PD-4833, HEAT INPUT DATA FOR ALL-WELD TENSILE SPECIMENS

*Backside of weld joint
$\begin{aligned} & \text { TABLE XXXII }-- \text { RESULTS OF RC HARDNESS TRAVERSE, WELDMENT PD-4834 } \\ & \text { (See Figure 42) }\end{aligned}$
$\begin{array}{ll}\text { Loc. } & \mathrm{Rc} \\ \text { No. } & \text { No.Zone }\end{array}$

TABLE XXXII (Continued)

Loc.	Rc
No.	No.Zone
101.	40
102.	43
103.	41
104.	41
105.	46
106.	42
107.	41
108.	42
109.	46 WELD
110.	41
111.	40
112.	45
113.	38
114.	45
115.	38
116.	45
117.	39
118.	44

TABLE XXXIII -- OPTIMUM WELDING PROCEDURE FOR SPRAY ARC GMA WELDING 6" (15.24 cm) HY-150 STEEL IN FLAT POSITION

General Requirements

Base Material:	HY-150 Quenched and Tempered per MIL-S-24371 (SHIPS)
Welding Electrodes:	SMA Process, Type 14018AW per MI-30-CE/1 GMA Process, Type 140 S per MI-30 BE/l
Joint Design:	Type B2V3 per MIL-STD-0022B (SHIPS) Double Vee Butt Joint 450 ${ }^{\text {(2) }}$
Type Restraint:	None Pre-Weld Cleaning: Grinding and Wire Brush Interpass Cleaning: Slag Pick and Wire Brush
Inspection:	
Fit-Up:	Visual Root and Backside: Magnetic Particle (MT)
Final:	Magnetic Particle (MT), Radiography (R.T.) and Ultrasonic (U.T.)
Applicable InspectionStandards:	
Standards:	MT: MIL-STD-271D
RT:	MIL-STD-271D and NavShips 0900-003-9000, Gr. I
U.T.:	NavShips 0900-006-3010, CLI

Notes:

1. Modified to allow maximum carbon content of 0.13%.
2. Double bevel foint preparations are flame cut.

TABLE XXXIII -- OPTIMUM WELDING PROCEDURE FOR SPRAY ARC GMA WELDING 6" (15.24cm)
HY-150 STEEL IN FLAT POSITION (Continued)

Welding Parameters
Pass Numbers
Process
Manual, Semi-Automatic
Position
Electrode Type
Electrode Size
Arc Voltage
Wire Feed Speed
Welding Current
Type Current \& Polarity Shielding Gas
Shielding Gas Flow Rate Preheat Temperature Interpass Temperature
119.

Root Passes

Fill Passes

```
Remainder
GMA
Semi-Automatic
Flat
140-S
\(146^{\prime \prime}\)
\(25-26\)\((0.16 \mathrm{~cm})\)
25-26 (0.16cm)
\(180-2001 \mathrm{pm}(458-507 \mathrm{~cm} / \mathrm{min})\)
280-310 Amps.
DCRP
Argon/2\% \(\mathrm{O}_{2}\)
45-55 CFH
\(200^{\circ} \mathrm{F}\left(93^{\circ} \mathrm{C}\right) \mathrm{Min}\).
\(275^{\circ} \mathrm{F}\left(135^{\circ} \mathrm{C}\right)\) Max.
\#8 \& 10
\(5 / 8^{\prime \prime}\) " 1.5 cm ) (Approximately)
\(1 / 2^{\prime \prime}\binom{1.2 \mathrm{~cm}}{1.2 \mathrm{~cm}}\left(\begin{array}{l}\text { Approximately } \\ \text { Approximately }\end{array}\right\}\)
\(12-161 \mathrm{pm}(30-40 \mathrm{~cm} / \mathrm{min})\)
\(45 \mathrm{KJ} / \mathrm{in}(17.7 \mathrm{KJ} / \mathrm{cm})\)
```

Notes: 1. The welding voltage to be measured at the wire drive unit.
2. A prepurge and postpurge capability shall be provided.
3. Weldment temperature shall be maintained @ $200^{\circ} \mathrm{F}\left(93^{\circ} \mathrm{C}\right)$ minimum at all times during welding and @250-300 $\mathrm{F}\left(121-149^{\circ} \mathrm{C}\right)$ between shifts and overnight until the completion of welding.
4. Weldment temperature measured at point of weld start.

FIGURE 1 - DEFECT PATTERNS IN BASE PLATES

FIGURE 2 MATERIAL LAYOUT OF MASTER PLATE F-4602

figure 3 MATERIAL LAYOUT OF MASTER PLATE F-4603

FIGURE 4 - LOCATIONS OF HARDNESS TEST BLOCKS, PLATE F 4602

SHORT-TRANSVERSE

FIGURE 5 - TENSILE SPECIMEN DIMENSIONS AND DETAILS

FIG. 6
CHARPY V-NOTCH IMPACT SPECIMEN

NOTCH DETAILS:

FIGURE 7 - BASE METAL EDGE-NOTCHED FRACTURE TOUGHNESS BEND SPECIMEN DIMENSIONS AND DETAILS

[^0]

FIG. 9 - LOCATION AND ORIENTATION OF TENSILE AND CHARPY SPECIMENS WITHIN SPECIMEN BLOCKS TAKEN FROM MASTER PLATES F4602 AND F4603.

$2^{\prime \prime}(5.08 \mathrm{~cm})$ HY-80 BASE PLATE

RESTRAINT CONDITIONS:

$$
\begin{aligned}
& \text { FOR 1st SIDE WELDED - - WELDED WITH } 1 / 2 \text { " }(1.27 \mathrm{~cm}) \text { FILLET WELDS TO } \\
& 2^{\prime \prime}(5.08 \mathrm{~cm}) \text {-THICK STEEL TABLE TOP. } \\
& \text { FOR 2nd SIDE WELDED - }- \text { FOUR LARGE 'C'" CLAMPS, ONE AT EACH } \\
& \text { CORNER OF WELDMENT. }
\end{aligned}
$$

FIGURE 10 - WELD JOINT DESIGN AND SPECIMEN LOCATIONS, TEST PLATE PD-4836 (SMA)

RESTRAINT CONDITIONS:
FOR ist SIDE WELDED - - WELDED WITH $1 / 2^{\prime \prime}(1.27 \mathrm{~cm})$ FILLET WELDS TO $2^{\prime \prime}(5.08 \mathrm{~cm})$-THICK STEEL TABLE TOP.

FOR 2nd SIDE WELDED - - FOUR LARGE "C " CLAMPS, ONE AT EACH CORNER OF WELDMENT.

FIGURE 11 - WELD JOINT DESIGN AND SPECIMEN LOCATIONS, TEST PLATE NO. PD-4837 (GMA)

FIGURE 12 - TEST SPECIMEN LAY-OUT FOR TASK III WELDMENTS PD-4825, PD-4830, PD-4828 AND PD-4833

FIGURE 13 - TEST SPECIMEN LAY-OUT FOR TASK III WELDMENTS PD.4827, PD-4831, PD-4824 AND PD-4834

FIGURE 14 - WELD LOCATION AND ROLLING DIRECTION DETAILS FOR TASK III AND IV $K_{\text {IC }}$ SPECIMENS, INCLUDING PD-4826, PD-4931, PD-4829 AND PD-4835

FIGURE 15 TRANSVERSE CVN IMPACT TEMPERATURE TRANSITION CURVE - PLATES F4602 and F4603

FIGURE 16 LONGITUDINAL CVN IMPACT TEMPERATURE TRANSITION CURVE - PLATE F4602
Reproduced from
best available copy.
为

FIGURE 18 - BASE METAL K ${ }_{1 C}$ SPECIMEN MOUNTED IN TEST
FRAME FOR PRECRACKING

FIGURE 19-PRECRACK DIMENSIONS AND DETAILS, BASE METAL FRACTURE TOUGHNESS TEST SPECIMEN PD-2BMK

FIGURE 20 - PRECRACK DIMENSIONS AND DETAILS, BASE METAL FRACTURE TOUGHNESS TEST SPECIMEN PD-3BMK

PD-2BMK PLATE F4602

PD-3BMK
PLATE F4603

FIGURE 21 - FRACTURE SURFACES, BASE METAL FRACTURE TOUGHNESS TEST SPECIMENS AFTER TESTING

FIGURE 22 - LOAD-DISPLACEMENT CURVE FOR FRACTURE
TOUGHNESS TEST OF SPECIMEN PD-2BMK

CLIP GAGE DISPLACEMENT $\left(1 / 2^{\prime \prime}=0.06^{\prime \prime}\right)(1.3 \mathrm{~cm}=0.15 \mathrm{~cm})$

FIGURE 23 - LOAD-DISPLACEMENT CURVE FOR FRACTURE TOUGHNESS TEST OF SPECIMEN PD-3BMK

FIG 24 MATERIAL RESPONSE CURVES BASE METAL \& WELDMENTS

FIGURE 25 - PRELIMINARY WELD WIRE EVALUATION WELDMENT PD 4837 PARTIALLY COMPLETED AND EDGE FILLET WELDED FOR HIGH RESTRAINT

2% NITAL
PD 4836
1.0X

FIGURE 26 - PHOTO-MACROGRAPHS OF PRELIMINARY WELD WIRE EVALUATION TEST WELDMENTS PD 4836 AND PD-4837

FIGURE 27-COMPARISON OF PROPOSĖD AND SELECTED TASK III AND IV WELD JOINT DESIGNS

FIG 28 - WELD MISMATCH DETAILS, WELDMENT PD-4826

FIGURE 29 - MACROSECTION THROUGH WELDMENT PD-4827

FIGURE $30 R_{c}$ HARDNESS TRAVERSE PATTERN. WELDMENT PD 4827

FIGURE 31 - SPECIMEN PD-4826 FRACTURE SURFACE AND
PRECRACK AREA DETAILS

CLIP GAGE DISPLACEMENT $\left(1 / 2^{\prime \prime}=0.02^{\prime \prime}\right)(1.3 \mathrm{~cm}=0.05 \mathrm{~cm})$

FIGURE 32 - LOAD vs. DISPLACEMENT RECORD, FRACTURE TOUGHNESS BEND SPECIMEN PD-4826.

FIGURE 33 - MACROSECTION THROUGH WELDMENT PD-4831

FIGURE $34-R_{C}$ HARNESS TRAVERSE PATTERN, WELDMENT PD-4831

PD-4931
PHOTO CREDIT:
LEHIGH UNIVERSITY

FIGURE 35 - SPECIMEN PD-4931 FRACTURE SURFACE AND PRECRACK AREA DETAILS

CLIP GAGE DISPLACEMENT $\left(1 / 2^{\prime \prime}=0.02^{\prime \prime}\right)(1.3 \mathrm{~cm}=0.05 \mathrm{~cm})$

FIGURE 36 - LOAD vs. DISPLACEMENT RECORD, FRACTURE
TOUGHNESS BEND SPECIMEN PD-4931

FIGURE 37 - MACROSECTION THROUGH WELDMENT PD-4824

FIGURE 38 - R_{c} HARDNESS TRAVERSE PATTERN WELDMENT PD-4824.

PD-4829

FIGURE 39 - SPECIMEN PD-4829 FRACTURE SURFACE AND PRECRACK AREA DETAILS

CLIP GAGE DISPLACEMENT $\left(1 / 2^{\prime \prime}=0.02^{\prime \prime}\right)(1.3 \mathrm{~cm}=0.05 \mathrm{~cm})$

FIGURE 41 - MACROSECTION THROUGH WELDMENT PD-4834

FIGURE $42-R_{\mathrm{c}}$ HARDNESS TRAVERSE PATTERN, WELDMENT PD-4834

FIGURE 43 - SPECIMEN PD-4835 FRACTURE SURFACE AND

CLIP GAGE DISPLACEMENT $\left(1 / 2^{\prime \prime}=0.02^{\prime \prime}\right)(1.3 \mathrm{~cm}=0.05 \mathrm{~cm})$

FIGURE 44 - LOAD vs. DISPLACEMENT RECORD, FRACTURE 〒OUGHNESS BEND SPECIMEN PD-4835

[^0]: FIGURE 8 - METHODS OF LOADING USED IN PRE-CRACKING AND TESTING ALL KIC ${ }_{\text {IC }}$ SPECIMENS OF THIS PROGRAM (WELD SPECIMEN SHOWN)

